
Typechecking

98-317: Hype for Types

Due: 11 September 2018 at 6:30 PM

Introduction

In class we introduced inference rules and how they’re used to specify type sys-
tems. We then gave the specification of Lambda++, a language with abstracti-
ons, products, and sums; and we implemented a typechecker for Lambda++
based on this specification.

In this homework you will implement this typechecker yourself, based on the
same inference rules. We’ve also included optional exercises which should help
improve your understanding of type systems.

Turning in the Homework We’ll only be collecting your solution to the
“Required” section of this homework. We would be happy to separately discuss
your solutions to the other sections of the homework with you if you’d like.
Submit LPPChecker.sml to the “Typechecking” assignment on Autolab. Since
we’re only collecting one code file, you don’t need to submit it as a tar.

1



Required

As you’ll recall from class, here is the syntax of Lambda++. This syntax is
implemented in the file LambdaPlusPlus.sml.

Type τ ::= α base type
τ → τ arrow type
τ + τ sum type
τ × τ product type

Expression e ::= x variable
fn (x : τ)⇒ e abstraction
e e application
(e, e) pair
#1 e left projection
#2 e right projection
INL e into + τ left injection
INR e into τ + right injection
case e of INL x⇒ e | INR x⇒ e case analysis

And here are the static semantics of Lambda++. These semantics are identical
to those we presented in class.

Γ(x) = τ

Γ ` x : τ

Γ, x : τ1 ` e : τ2
Γ ` fn (x : τ1)⇒ e : τ1 → τ2

Γ ` e′ : τ1 Γ ` e : τ1 → τ2
Γ ` e e′ : τ2

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2
Γ ` #1 e : τ1

Γ ` e : τ1 × τ2
Γ ` #2 e : τ2

Γ ` e : τ1
Γ ` INL e into + τ2 : τ1 + τ2

Γ ` e : τ2
Γ ` INR e into τ1 + : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case e of INL x1 ⇒ e1 | INR x2 ⇒ e2 : τ

Required Task 1 In LPPChecker.sml, complete the typechecking function

check : LambdaPlusPlus.exp -> LambdaPlusPlus.typ

such that check e returns τ if ` e : τ is derivable under the above static
semantics, and raises TypeError otherwise.

2



You can use the Top.check function to test your typechecker:

$ sml -m ./sources.cm

...

[New bindings added.]

- Top.check "fn (x : A) => x";

(A -> A)

val it = () : unit

- Top.check "fn (x : A) => fn (y : B) => x";

(A -> (B -> A))

val it = () : unit

- Top.check "fn (x : A * B) => (#2 x, #1 x)";

((A * B) -> (B * A))

val it = () : unit

- Top.check "

fn (x : A + B) =>

case x of

INL y => INR y into B + _

| INR z => INL z into _ + A

";

((A + B) -> (B + A))

val it = () : unit

- Top.check "fn (x : A + B) => #1 x";

uncaught exception TypeError

raised at: LPPChecker.sml:...

- Top.check "fn (x : A) => y";

uncaught exception TypeError

raised at: LPPChecker.sml:...

3



Useful (Not Required)

In this section, you’ll be looking a simple language and answering some questions
about how type checking will work in that language.

The syntax of this language is:

Type τ ::= int integer
str string

Expression e ::= x variable
n̄ integer literal
s̄ string literal
e1 + e2 addition
e1ˆe2 concatenation
let x = e1 in e2 let-expression

We define the following static rules for it:

Γ(x) = τ

Γ ` x : τ Γ ` n̄ : int Γ ` s̄ : str

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e1 : str Γ ` e2 : str

Γ ` e1ˆe2 : str

Γ ` e1 : τ ′ Γ, x : τ ′ ` e2 : τ

Γ ` let x = e1 in e2 : τ

Namely:

1. Variables have the type that they have been assigned in the context.

2. Number and string literals are numbers and strings respectively.

3. An addition of numbers is a number. A concatenation of strings is a string.

4. A let-expression finds the type of e1, then assuming x has that same
type, finds the type of e2. That type is then the type of the overall let-
expression.

Useful Task 1 Give a derivation of the following claim:

(let x = 1 + (let y = “98” in 2) in 317 + x) : int

No need to be super formal, or even bother with typesetting the proof tree
if it’s too complicated. Just lay out which claims you’re checking, and which
rules you apply at every step.

Useful Task 2 The following expression is not well-typed:

“vi”ˆ (let x = “vijay” in (let y = 2 in x+ y))

By inspection we can clearly tell that it is ill-formed. At which step (which
rule) does an attempt at synthesizing the type fail? There might be more than
one answer to this question, but try to give a justifiable one.

4



Useful Task 3 Suppose we added the following rule to the typing judgment:

Γ ` e1 : str Γ ` e2 : str

Γ ` e1 + e2 : str

This would not be a very good idea. From the perspective of soundness (the
type system making logical sense), why is it a bad idea? From the perspective
of implementation (how we would actually go about checking and synthesizing
types), how would this negatively impact us?

Useful Task 4 Suppose we deleted the rule for string literals:

Γ ` s̄ : str

How would this affect the typechecking of the two examples in the first two
required tasks? Would the output of a synthesis attempt be different than they
were before?

5



Fun (Not Required)

Fun Task 1 The language we gave you contains binary sums and products.
Not much effort is necessary to have it support n-ary sums and products, where
essentially we would have a list for the type and the expression of sums and
products. Try to rework the Lambda++ syntax to incorporate n-ary sums and
products. If you alter the AST in LambdaPlusPlus.sml the parser will likely
stop working, so it might be a good idea to remove it from compilation and test
the ASTs directly if you choose to do this.

Rework the typing rules to support n-ary sums and products, and update
the typechecker you’ve written to match this. (Make sure not to submit this
reworked typechecker as your solution to the Required section!)

6


