
Homework 4
Phantom Types

98-317: Hype for Types

Due: 2 Oct 2018 at 6:30 PM

1 Introduction

In class, we discussed the idea that you can add useless type parameters to a type to increase
the number of correctness properties you can statically check. In this homework, you will
take a signature for an Array structure, and add phantom types to it to statically enforce
the when the arrays can be modified.

Turning in the Homework You should submit a PDF with your solutions to Autolab
under Phantom Types.

1



2 Spooky Arrays

Consider the following signature for a structure representing Arrays in SML.

signature ARRAY = sig

type ’a array

(* get A i returns SOME (A[i]) if i is in bounds, and NONE otherwise *)

val get : ’a array -> int -> ’a option

(* set A i x sets the ith index of the array to x *)

val set : ’a array -> int -> ’a -> unit

(* For each A[i], map_inplace f A sets A[i] to f(A[i]) *)

val map_inplace : (’a -> ’a) -> ’a array -> unit

(* map f A creates a new array B in which B[i] is f(A[i]) *)

val map : (’a -> ’b) -> ’a array -> ’a array

(* create i x creates a new array of length i where every element is x *)

val create : int -> ’a -> ’a array

(* Makes the array readonly *)

val to_readonly : ’a array -> ’a array

end

Arrays should behave like they do in other languages like C and Python: you can find an
element at a particular index in O(1) and you can modify an element at any index in O(1).
In SML, we also have higher-order functions, so we want to be able to map on arrays, and
also map inplace, which is like map but instead of making a new array, changes the elements
of the array in-place.

Where do phantom types come in here? We’d like to be able to designate an array as read-
only or not: read-only arrays should not be able to be modified, so set and map inplace
should not work on them. This is useful if we want some untrustworthy functions to only
be able to look at the contents of our array (and thus get the nice O(1) lookup properties of
arrays), not modify them.

2



Your job is to make a new signature, PHANTOM ARRAY, which enforces the difference between
read-only and read-write arrays. We’ve gotten you started off by providing the type decla-
rations. It’s your job to fill in the types of values in the signature.

signature PHANTOM_ARRAY = sig

type readwrite

type readonly

type (’a, ’b) array

val get : (* Problem 1 *)

val set : (* Problem 2 *)

val map_inplace : (* Problem 3 *)

val map : (* Problem 4 *)

val create : (* Problem 5 *)

val to_readonly : (* Problem 6 *)

end

For each problem, write down the type that the value should have. The types should enforce
the following properties:

1. If A is an array, then set (to readonly A) i x should not typecheck.

2. If A is an array, then map inplace f (to readonly A) should not typecheck.

3. If A is an array and i is an int, then get A i should typecheck.

4. If A is an array containing values of type t and f : t → t, then map f A should type-
check and should return an array that is readonly if A is readonly.

5. If A is an array that is not read-only containing values of type t and f : t → t, then
map inplace f A should typecheck.

6. If i is an int and x is a value of type t, then create i x should typecheck and should
return a read-write array that contains values of type t.

7. If A is an array, then to readonly A should typecheck and should return a read-only
array.

3


	Introduction
	Spooky Arrays

