
Homework 5
Subtyping

98-317: Hype for Types

Due: 9 Oct 2018 at 6:30 PM

1 Introduction

This week in lecture, we discussed several systems of subtyping. Some of the examples we
gave, such as record and variant width and depth subtyping, are straightforward generaliza-
tions of relationships between types, and could be plausibly integrated into ML. (OCaml’s
polymorphic variants are an example of variant width subtyping in practice.)

However, most interesting subtype systems are seen in languages lying further from the ML
tradition. Of the most commonly used programming languages, Java and its descendents1

now have some of the most fanatic adherents of inclusion polymorphism.2

Therefore, we will use Java as the language for much of this assignment, though knowledge
of Java is not required to complete it. If you have questions on the basic syntax of Java, feel
free to ask on Piazza or use one of the numerous resources on the web.

Turning in the Homework You should submit a PDF with your solutions to Autolab
under Subtyping.

1viz. Scala, Kotlin. The .NET languages also developed similarly rich systems in parallel.
2one of the forms of polymorphism; the others are parametric polymorphism, ad-hoc polymorphism, and

row polymorphism.

1

2 Bounded Polymorphism

In Java, we may write an interface (similar to a typeclass in Haskell, protocol in Swift, trait
in Rust, . . .) expressing a type which has an associated comparison operation:

enum Order { Less, Greater, Equal }

interface Comparable {

Order compareTo(Comparable other);

}

The interface defines one method compareTo, which takes an object other and returns an
ordering. The type of other is constrained to be an instance of Comparable. In Java,
because of the subsumption property, any subtype of Comparable may be implicitly treated
as a Comparable.

It is now possible for us to write a class (which for our purposes is merely a record with one
field) that can be compared:

class Foo implements Comparable {

int foo;

@Override public Order compareTo(Comparable other) {

Foo o = (Foo) other; // <- this is annoying

return foo > o.foo ? Order.Greater :

foo < o.foo ? Order.Less :

Order.Equal;

}

}

However, as you can see, the interface Comparable limits the information we have. In
particular, we know only that the argument other is an instance of Comparable, and not
that it ought to (if our comparisons are to be reasonable) be an instance of Foo. We must
downcast the object to Foo, possibly causing an exception to be thrown at runtime.

2.1 Generics

We can improve the information we have available to us by annotating the Comparable

interface with the actual type of the items to be compared. This invokes parametric poly-
morphism, and is roughly the same as placing a type parameter such as 'a in ML onto the
type.

/** @param <T> The type of the item to be compared. */

interface Comparable<T> {

Order compareTo(T other);

}

2

Now, we can securely implement a comparison for our class Foo:

class Foo implements Comparable<Foo> {

int foo;

@Override public Order compareTo(Foo other) {

return foo > other.foo ? Order.Greater :

foo < other.foo ? Order.Less :

Order.Equal;

}

}

No more downcast is necessary, and we get the added advantage that comparing Foo with
other Comparable objects will be a type error unless those objects are also Foo.

2.2 Interface Subtype

An issue arises if we attempt to use our new Comparable interface, however. Suppose we are
defining a new interface Container, such that Containers are also Comparable. We might
write the following, using the extends keyword to indicate subtyping:

interface Container<T> extends Comparable<T> {}

Be aware: T is not the type of the elements of the container (which remain abstract). It is
instead the type of the container itself! Now we implement the interface:

class List implements Container<List> {

@Override public Order compareTo(List other) {

// implementation

}

}

This works just fine! But there is a problem. Nothing stops the user from writing something
like this:

class Bar implements Container<Foo> {

@Override public Order compareTo(Foo other) {

// implementation

}

}

This is valid code, but it makes no semantic sense. How do we compare Bar to Foo? What
we want to do is constrain the ability of the user to implement Container, with the correct
type parameter.

3

2.3 Bounds

It turns out that we can accomplish this constraint using bounded polymorphism. Java’s
system of generics allows us to limit the accepted range of type arguments for a generic type.
Namely, there are two bounds:

<? extends T>

<? super T>

The first specifies that the type argument must be a subtype of T, and the second specifies
that it must be a supertype.

In Java, the ? wildcard is merely a type variable. The only difference between ? and a named
variable like T is that T is explicitly declared and scoped, whereas ? is usable inline. The
following OCaml and Java are roughly equivalent:

let l: 'a list = [1; 2; 3]

List<?> l = Arrays.asList(1, 2, 3);

First, let’s check your understanding of bounded polymorphism.

Required Task 1. In one sentence, describe the difference between the following two
types:

List<? extends Animal>

List<Animal>

Hint: There really is an important difference! Both describe “a list of Animals”, but how
can you construct an instance of one type, versus the other?

Now, we will use bounds to solve the problem.

Required Task 2. Give a bound to the Container type that enforces the notion that a
Container must implement a comparison to itself.3 That is, we want to fill in the blank:

interface Container<__________> extends Comparable<T> {}

Your answer should make use of F -bounded polymorphism.

Hint : That means a bound which is self-referential in the quantifier. Of course, the answer
to this question may give you a better idea of what F -bounded polymorphism is, rather than
the other way around. . .

3Technically, Java’s type system will probably allow some leakiness in that condition, but there is a clean
solution that clearly prevents the Foo/Bar problem above.

4

3 Behavioral Subtyping

In the fanatic world of object-oriented programming, the idea that subtypes should describe
behavior is upheld as a maxim. That is, if we consider the principle of subsumption:

If e : σ and σ is a subtype of τ , then e : τ .

then we may generalize it to a description of observable behavior, known as the Liskov
substitution principle:

If φ(e) is a property provable about all e : τ , and σ is a subtype of τ , then φ(e′)
must be true for all e′ : σ.

We may rewrite that in a more (arguably excessively) succinct way:

Every σ is a τ .

Note that the converse is not necessarily true!

But what does it mean for a σ to be a τ? We may define it through substitution, i.e. to say
that it must be possible for an instance of σ to be freely substitutible where a τ is expected
while maintaining the correctness of the program.

Programmers versed in theory recognize such a claim as immediately undecidable in general,
and possibly unwieldy in practice. Nevertheless, a large part of OOP software design is in
service of the LSP. We will now ask whether the LSP is a good candidate for a “reasonable
interpretation of subsumption”.

Consider a type hierarchy (class hierarchy) of two objects: Squares and Rectangles, defined
intuitively.

Required Task 3. Give a reasonable argument, under the Liskov substitution principle,
that Square should be considered a subtype (subclass) of Rectangle.

Required Task 4. Give a reasonable argument, under the Liskov substitution principle,
that Rectangle should be considered a subtype of Square.

Hint: Depending on your first impression, one of these directions may be much easier than
the other! Think about what interface we can write for Square that Rectangle should be
able to easily implement, and vice versa. Mutability matters.

Given the ability to compellingly argue that Square should be considered a subclass of
Rectangle and that Rectangle should be a subclass of Square, we must conclude that they
are equal!

Well, okay, that would be ridiculous. But, we will leave you to formulate your own opinion
of behavioral subtyping: whether a subtyping system should be considered sound as long as
it is behaviorally consistent, or considered complete even if it is not.

5

4 Row Polymorphism

The Objective Caml programming language, designed in the intense weeks after the storming
of the Bastille and the toppling of the French king Louis XVI, was infused with the republican
principles of the revolution: “fortement typé, strictement évalué, objet orienté!”

Despite the visionary goals of the the revolutionary organization INRIA, Objective Caml,
a.k.a. OCaml was suppressed during the reign of Napoleon, a notorious lover of lazy pro-
gramming languages. The Congress of Vienna finally resulted in the standardization of
OCaml as a language, though several grueling decades of war had decimated the ranks of
the object-oriented programmers. Contributing to the loss of popularity was OCaml’s in-
teresting approach to objects: a system known as row polymorphism. We now study row
polymorphism and how it affected the political, economic, and cache-coherency climate of
western Europe in the nineteenth century.

Though the influence of the Jacobins on OCaml remains disputed, historians agree that anti-
royalist sentiment led to the addition of an object system into OCaml, complete with classes
and inheritance. Unlike the maritime republics, whose interactions with the inhabitants of
the island Java (present-day Indonesia) led to a discipline of nominal, opaque objects, OCaml
provides object types akin to records:

let counter : <get : int; incr : unit> = object

val mutable n = 0

method incr = n <- n+1

method get = n

end

An object type is similar to a record in its naming and typing. However, it has one dis-
tinguishing feature termed row polymorphism, in which an object may be flexibly operated
on using only a subset of its fields. The literature makes frequent reference to the contrast
with Britain of this time period, whose relative conservatism limited the full development
of so-called flex records in His Majesty’s Standard ML. Namely, one can write functions like
the following in OCaml (where # denotes method invocation):

let print_count (c : <get : int; ..>) = print_int c#get

And with such a function, provide a decadently many possible arguments to invoke different
behaviors, as long as they uphold the basic object signature, regardless of other fields in the
object:

let zero : <get : int> = object

method get = 0

end in

print_count zero;

counter#incr;

print_count counter

Row polymorphism has been compared favorably to other political doctrines of the pe-

6

riod, most notably record width subtyping. However, the landed gentry, who favored the
preservation of the class-based system of inheritance that ensured the permanence of their
generational wealth, resisted the system considerably.

Required Task 5. Short response. In 50 words or less, answer the following prompt. You
may use any resource explaining the OCaml object system you wish, and use citations of
OCaml code to support your argument.

Despite the power of row polymorphism, in what ways is it deficient from true
subtyping?

Hint: There are arbitrarily complex answers depending on how well you know OCaml, but
think back to the example from class where we stored different kinds of entities in a collection.
Does row polymorphism allow this to be achieved?

5 Unsoundness of Java

Consider the following snippet of Java code.4

class Unsound {

static class Constrain<A, B extends A> {}

static class Bind<A> {

<B extends A>

A upcast(Constrain<A,B> constrain, B b) {

return b;

}

}

static <T,U> U coerce(T t) {

Constrain<U,? super T> constrain = null;

Bind<U> bind = new Bind<U>();

return bind.upcast(constrain, t);

}

public static void main(String[] args) {

String zero = Unsound.<Integer,String>coerce(0);

}

}

It compiles under javac, version 1.8.0_25. Upon execution, it produces a ClassCastException.

Fun Task 6. Describe how this snippet of code exposes an unsoundness in the Java type
system.

Hint: The inference of the type of the variable constrain is the culprit. The fact that it
can be easily set to null does not do Java any favors.

4From N. Amin and R. Tate, “Java and Scala’s Type Systems are Unsound: The Existential Crisis of
Null Pointers”, OOPSLA ’16.

7

	Introduction
	Bounded Polymorphism
	Generics
	Interface Subtype
	Bounds

	Behavioral Subtyping
	Row Polymorphism
	Unsoundness of Java

