Recursion

98-317: Hype for Types
Due: 16 October 2018 at 6:30 PM

Introduction

This week we explored recursion and how a recursive function can be implemented as the
fixed point of a non-recursive function. We also saw how the same approach can be used to
implement mutual recursion, and how to use a technique called open recursion to incremen-
tally modify mutually recursive functions. This homework has three tasks, all of which are
required.

Turning in the Homework Submit 06-recursion.sml to Autolab.



Cool Fixed Points

In class we implemented a cool fixed point function which produces a memoized recursive
function. There are many other ways in which fixed point functions can be cool. One of
them is by limiting the depth of recursion, which can prevent infinite looping.

Required Task Implement the function
fix_limited : int -> ((’a -> ’b) -> (’a -> ’b)) -> (Pa -> ’b)

such that fix_limited n f (where n is nonnegative) produces a function similar to the fixed
point of £, except that it is not allowed to recur deeper than n levels. When it tries to recur
deeper than n levels, it should raise RecursionDepthExceeded.

Note that being prohibited from recurring deeper than n levels is different than being
prohibited from making n recursive calls.

Fixed Point for Mutual Recursion

Recall the tree_counter type from class:

type tree_counter = {
counter : tree -> int,
leaf_counter : char -> int,
branch_counter : tree * tree -> int

3

Required Task Implement the function
fix_counter : (tree_counter —-> tree_counter) -> tree_counter

such that fix_counter f evaluates to a fixed point of f.

Open Recursion

In class we implemented a function to count the leaves of a tree by only overriding one field
of the pre_super function.

Required Task Using this philosophy, implement
pre_left_spine_length : tree_counter -> tree_counter

by only overriding one field of the pre_super function.
For any tree T, #counter (fix_counter pre_left_spine_length) T should evaluate
to the number of edges in the tree’s left spine.



