Homework 8
Memory

98-317: Hype for Types

Due: 30 Oct 2018 at 6:30 PM

1 Introduction

This week in lecture, we discussed ancient and modern techniques for memory manage-
ment. Though we are all well-conditioned to state that manual memory management is bad
and error-prone, the truth is that garbage collection is neither sufficient nor realistic for a
wide variety of real-world software programs, ranging from embedded development to high-
frequency trading. Nevertheless, we don’t have to resort to the barbaric world of malloc
and free, which aren’t even fast!! The world of type systems and static analysis gives us
better tools to work with memory.

Turning in the Homework You should submit a PDF with your solutions to Autolab
under Memory.

'Recall your 15-213 implementation of malloc. Its slowness is due to fragmentation and unpredictable
free patterns, both of which are avoidable.



2 Tail Recursion

Many languages, such as Standard ML, implement an optimization known as tail call opti-
mization that transforms functions whose return value is another function call from having
a deeply nested call stack to a shallow one, by reusing the caller’s stack frame. This pre-
vents stack overflow on a large class of programs, and is widely considered an important
optimization that is catching on in the non-functional world as well.

However, there are restrictions in the C language that prevent tail call optimization in the
general case, even when the caller clearly returns another function call as its return value.
Namely, the address-of operator, &, can be used to pass addresses of caller variables to callees.
That means that a tail callee may rely on data lying within the caller’s stack frame, and
therefore the caller stack frame cannot be safely reused.

We can write some interesting programs with this observation. In fact, very interesting
programs. Chicken, a cross-compiler for Scheme to C, actually uses the call stack to avoid
heap allocations. We should be able to do the same!

Let’s implement linked lists using the C call stack. In particular, let’s implement lists of
integers. We will use the following interface:

typedef struct list_node {
int data;
struct list_node *next;
} list_t;

Take for granted a fixed array of data and its length > 0:

static int DATA[] = {9, 8, 3, 1, 7, 9, 8, 2, 1, 0};
static int DATA_LEN = 10;

And a checker function:

void check_list(list_t *1list) {
for (int i = 0; list !'= NULL && i < DATA_LEN; i++, list = list—>next) {
assert (DATA[i] == list->data);
+
assert(list == NULL && i == DATA_LEN);
}

Required Task 1. Write a C routine that will successfully invoke check_list on a valid
linked list containing the elements in DATA in order.

For example, here is a correct invocation of the function:



list_t *1list = NULL;

for (int i = DATA_LEN - 1; i >= 0; i--) {
list_t *new = malloc(sizeof(list_t));
new->data = DATA[i];
new->next list;
list = new;

}

check_list(list);

However, your implementation must not call malloc, calloc, alloca, mmap, brk, sbrk, or
any similar dynamic allocation functions. It should work without modification if the example
list is extended. It should not store the list as static data, in an array, a large struct, etc.
It should use the C call stack alone to implement the linked list. It does not have to be
tail-recursive, but the natural implementation will be.

Hint: You can declare a struct on the stack:

{
list_t list;
list.data = 0O;
list.next = NULL;
}

Hint 2: Our solution is 15 lines.



3 Lifetime Subtyping

In lecture, we briefly discussed the notion of lifetimes. Lifetimes parametrize references,
making them safe to use and allowing us to prove that dangling pointers are not dereferenced
at runtime. Since lifetimes are associated with reference types, we would expect to be able
to discuss polymorphism and subtyping for them.

A language like Rust allows us to describe lifetime polymorphism and subtyping. Here is a
small program in Rust demonstrating lifetime polymorphism:

fn foo(xs: &mut [i32]) {
xs[0] = xs[xs.len() - 1];
}

You don’t have to know Rust to understand this function; it merely sets the first element of
a list (technically called a slice) of integers to be equal to the last element of said list. The
type of xs, &mut [i132], denotes that it takes a mutable reference to a list of integers. That
is, somebody else owns the actual list and manages its allocation and deallocation, while we
only have the ability to mutate its fields. That is why we can only swap around elements,
not extend or shrink the length of the list.

Rust uses affine types, so perhaps you're wondering how we’re able to easily copy an element
into another field. Integers are small, so there is primitive support for copying integers.
However, if we wanted to make this function polymorphic, things get trickier:

fn foo<'a, T>(xs: &mut [&'a T]) {
xs[0] = xs[xs.len() - 1];
}

What we’ve changed here is that xs no longer takes a list of integers, but rather a list of
references to some type T. References are very much like pointers at runtime, so copying
them is still no issue at the machine level. But now we have to ask what the lifetimes of
the references are. xs is of type &mut [&'a T], read as a mutable reference to a slice (list)
of “references to T with lifetime 'a”. Note how foo is also parameterized with <'a, T>,
making it generic over the type T and the lifetime 'a. Don’t be confused by the notation
here: 'a denotes a lifetime in Rust even though it looks like a ML type variable (the type
variable here is just T).

This function being generic over both 'a and T means that whatever the type T is, and how-
ever long the references are supposed to last, the function will operate over those references.
In particular, the typechecker is able to prove that we are not placing pointers to other data
types, or pointers that end up dangling, into the list. In this case, we are merely duplicating
an element already in the list, which is clearly okay.

But the requirement currently is quite strong: xs only accepts references of lifetime 'a. That
means we have to be extremely particular, and it’s hard to see what we might even be able
to put into xs other than duplicates of what is already inside! To solve this problem, we
revisit subtyping.



Required Task 2. We will represent the subtyping of lifetimes using the following judg-
ment:
’a<:’b

which states that 'a is a subtype of 'b satisfying subsumption (any 'a can be used in place of
'b). Suppose we had a long lifetime 'long and a short lifetime 'short. A concrete example
of the long and short lifetimes may be:

{
let x: T = T::new(); // Create a T
let x_ref: &T = &x; // Obtain a &'long T reference to
{
let y: T = T::new(); // Create a T
let y_ref: &T = &y; // Obtain a &'short T reference to y
// Constider 'long and 'short at this point
}
}

Which of these two relations is true?

’long <: ’short
’short <: ’long

Required Task 3. In the context of subtyping, there is a notion of bottom type, the type
that can be safely upcast to any other. Give a compelling description of a bottom type when
it comes to lifetimes. There is a precise answer to this question.

Hint: What are the different storage classes of data in C? Feel free to look it up.

Fun Task 4. Is there a compelling notion of top type? Can you think of one?



4 Linear Programming

In class, we saw examples of programs in the linearly-typed lambda calculus. Really it was
the affine-typed version, since discarding variables is not considered too harmful, and the
result looks much like Standard ML without structural sharing.

As a refresher, we argued that if we wanted to implement
val clone : 'a list -> 'a list * 'a list

the following would not be a correct implementation:

fun clone xs = (xs, xs)

since it uses xs twice in the manner of sharing. Philosophically, it is unsatisfying because it
does not allow us to predict the usage of a resource like memory. It claims to clone a list, but
really just returns two references to the same list, and given a collection of lists we cannot
predict how much memory is used by the system.

Instead, we needed a helper function to clone the elements:

val £ : 'a -> 'a *x 'a

and we traversed the entire list, duplicating at each level.

We will now write some more programs in the affine-typed lambda calculus.
Required Task 5. Implement the following:

val append : 'a list -> 'a list -> 'a list

and characterize its heap usage in terms of the size of the input. Assume that [], ::, and
any instance of 'a take up one heap cell of space. Remember that the input already makes
available some number of heap cells.

Hint: This shouldn’t be difficult. But can you get the constants exactly right?
Crazy Task 6. Implement the following:

val mergesort : 'a list -> ('a -> 'a -> order) -> 'a list

and provide the heap usage, if you are really crazy.

Hint: http://raml.co


http://raml.co
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