
Homework 9
Modules

98-317: Hype for Types

Due: 6 Nov 2018 at 6:30 PM

1 Introduction

In class, we talked about the type theory behind modules in SML. This involved discussing
how to write the type of a module using singleton kinds and existential types. This homework
gives more practice working with the two.

Note: If you find yourself spending more than 30 minutes on this homework, stop and turn
in what you have. You will get full credit.

Turning in the Homework You should submit a PDF with your solutions to Autolab
under Modules.

1



2 One of a Kind

In lecture, we talked about singleton kinds, and how both int :: Type and int ::

S(int). Note that singleton kinds only contain type constructors of kind Type. There
is no S(list) since list :: Type → Type.

More generally, every type that has kind S(τ) where τ :: Type also has kind Type. This
gives us a subkind relation1

In particular, the following rule

S(τ) kind

Γ ` S(τ) <:: Type

tells us that if S(τ) is a valid kind, then it is a subkind of Type.

The least general kind of a type is one that does not have any subkinds other than itself.
For example, S(int) is the least general kind of int, but Type is not, since it has a subkind,
namely, S(int).

For each type constructor, give its least general kind.

Task 1 int list

Task 2 option

For each static component of a signature, give its least general kind.

Task 3

type t

type s = int

Task 4

type t = int

type s = t

1Recall from the subtyping lecture that τ1 is a subtype of τ2 if all the values that have type τ1 also have
type τ2. We apply the same thing to kinds now.

2



3 Existential (Crisis) Types

There are multiple signatures S that the following module could ascribe to.

structure M :> S = struct

type t = int list

type key = int

fun insert (v : t) (k : key) = k :: v

fun empty () : t = []

end

For each of the signatures given below, state if M ascribes to the signature or not. If it does
not, explain why. If it does, write the type of M :> S as an existential type.

Task 5

signature S = sig

type t

type key

val insert : t -> key -> t

val empty : unit -> t

end

Task 6

signature S = sig

type t = int list

type key

val insert : int list -> int -> int list

val empty : unit -> int list

end

3


