GADTSs

The humble datatype

type 'a tree = Empty

| Node of 'a tree * 'a * 'a tree

The humble datatype

Parametrized/Polymorphic Type

datatype tree = Empty
o [uode ot "a exee[] s + [ie]

Sum Type Product Type Recursive Type

“Algebraic Datatype”

What are we generalizing?

Constructors!

Then the question is...

What are constructors?

Two things!

datatype ‘a option = NONE | SOME of ‘a

NONE : ‘a option
SOME : ‘a -> ‘a option

case e of
NONE => ..
| SOME x => ..

Generalized?

Step 1

datatype ‘a option = NONE | SOME of ‘a

Rewrite to reflect “Thing 1” that constructors are

datatype ‘a option =
NONE : ‘a option
| SOME : ‘Ya -> ‘a option

Then remove the requirement that

1. All constructors create values of the same type (sum)

2. All constructors that take in a polymorphic type return a
polymorphic type (universal type)

1. Not all constructors create values of the same type

datatype ‘a welird option =
NONE : string welrd option

| SOME : 1int -> | int ||weird option

val x : int weird option = SOME 10 v’
val y : string weird option = NONE v’

val x : string welrd option = SOME “hi” X

2. Not all constructors that take in a polymorphic type
return a polymorphic type

datatype ‘a weirder option =

NONE : ‘a weilirder option
| SOME : |‘'a -> 1int weilrder option
val x : int weirder option = SOME “weird”

SOME [] v’

val y : 1nt welrder option

What do we have?

1. Generalized Sums

Constructors can create values of different types

2. Existential Types

Constructors that take in a polymorphic type do not have to return one

Generalized Sums

datatype ‘a welird option =
NONE : string weird option
| SOME : 1int -> 1int weilrd option

datatype ‘a weilird option =
NONE : string weird option
| SOME : int -> int welrd option

Generalized Sums

fn (e : ‘a weird option) =>
case e ot
SOME x => x
| NONE => 10

Could be SOME or NONE, since ‘a could be int or string

datatype ‘a weilird option =
NONE : string weird option
| SOME : int -> int welrd option

Generalized Sums

fn (e : 1nt welrd option) =>
case e of
SOME x => X

fn (e : string weird option) =>
case e of
NONE => “hello”

These are exhaustive matches.

Generalized Sums

fun wait really (e
case e ot
NONE => “hello”
| SOME x => 10

walt really : ‘a weird option -> ‘a

datatype

‘a weird option =

NONE :
SOME :

string welrd option
int -> int weird option

This typechecks.

‘a welrd option)

Let’s take a moment to
appreciate this

Generalized Sums

fun wait really (e
case e ot
NONE => “hello”
| SOME x => 10

walt really : ‘a weird option -> ‘a

datatype ‘a weilird option =

NONE :
| SOME :

string welrd option
int -> int weird option

‘a welrd option)

Home

Existential Types

Existential Type

About Home Page Research Teaching Programming

POPL 2018 Tutorial

January 15,2018

T f v @ 9 Votes

I've recently returned from POPL 2018 in Los Angeles, where Carlo Angiuliand | gave a
tutarial on Computational (Higher) Type Theory. |t was structured into two parts, each
consisting of a presentation of the theory followed by a demonstration of its use in

the RedPRL prover. The tutorial was based on work that | have been doing over the last
several years with my students, Carlo, Evan Cavallo, Favonia, and Jon Sterling, and with
my colleague Daniel Licata, supported by AFOSR MURI grant FAS550-15-1-0053.

Computational higher type theory integrates two themes in type theory:

1. Type theory is a theary of computation that classifies programs according to
their behavior, rather than their structure. Types are themselves programs
whose values stand for specifications of program equivalence.

2. Type theory can be extended to higher dimensions that account
for identifications of types and their elements. An identification is evidence for
the Interchangeability of two types in all contexts by computable
transformations.

The idea of computational type theory was pioneered by Per Martin-Lof in his famous
paper Constructive Mathematics and Computer Programming, and developed extensively
in the NuPRL type theory and proof development environment.

The idea of higher type theory arose from several developments, notably the late

| ‘ | Search |

RECENT POSTS

0 POPL 2018 Tutorial

o Sequentiality as the Essence
of Parallelism

o Proofs by contradiction, versus
contradiction proofs

0 PCLSRING in Semantics

o PFPL Commentary

RECENT COMMENTS

o Notes an |dris — The Breakfast Post on
Persistence of Memory

o JavaScriptR—HARRRFESIF? |
CODEIaFE on Dynamic Languages are
Static Languages

o Robert Harper on Sequentiality as the
Essence of Parallelism

o Andy Adams-Moran on Sequentiality as
the Essence of Parallelism

o Robert Harper on Sequentiality as the
Essence of Parallelism

Existential Types

datatype ‘a weirder option =
NONE : ‘a weilirder option

| SOME : ‘a -> 1nt weilrder option

Type theory break ,

Existential Types

datatype ‘a bobs blog =
NONE : ‘a bobs blog
| SOME : (‘'a * ‘a —-> bool) -> 1int bobs blog

datatype ‘a existential =
NONE : ‘a welrder option
. . | SOME : (‘a * ‘a -> bool)
EXlStentlal TypeS -> int welrder option

fn (e : 1nt existential) =>
case e ot
NONE => true
| SOME ‘a (x, f) => f x

Ocaml| Demo ,

