
Lambda Calculus
It turns out abstraction is pretty powerful



Lambda Calculus
It turns out abstraction is pretty powerful



abstraction (noun)
removing specific details from something so its concepts can be applied to a 
broader variety of circumstances



Example of Abstraction

Recipe for pineapple upside-down cake:

• Put pineapple in the bottom of the cake pan

• Pour the cake batter on top

• Bake it

• Turn it out upside-down so that the pineapple is on top



Example of Abstraction

Recipe for pineapple upside-down cake:

• Put pineapple in the bottom of the cake pan

• Pour the cake batter on top

• Bake it

• Turn it out upside-down so that the pineapple is on top



Example of Abstraction

Recipe for plum upside-down cake:

• Put plum in the bottom of the cake pan

• Pour the cake batter on top

• Bake it

• Turn it out upside-down so that the plum is on top



Example of Abstraction

Recipe for blueberry upside-down cake:

• Put blueberry in the bottom of the cake pan

• Pour the cake batter on top

• Bake it

• Turn it out upside-down so that the blueberry is on top



Example of Abstraction

An abstraction: adding a hole which can be filled in

Recipe for blueberry upside-down cake:

• Put blueberry in the bottom of the cake pan

• Pour the cake batter on top

• Bake it

• Turn it out upside-down so that the blueberry is on top

Let’s name this abstraction “upside-down cake”



Example of Abstraction

Applying the abstraction: filling in the hole

• “pineapple upside-down cake”

• “plum upside-down cake”

• “blueberry upside-down cake”



So then what is an abstraction?

• Something with holes in it which can be filled in later.

• Filling in the holes is called applying the abstraction.



When is an abstraction useful?

When it expresses a concept

that is general enough

for there to be many occasions

to apply

the abstraction



Lambda Calculus
A formalization of abstractions and applications



Representing Abstraction

• Is the “hole” representation sufficiently precise?

• No; example:

“functions are values”

What should be the result of applying this abstraction to “functions”?
• “functions are functions”?

• “functions are functions”?

• “functions are functions”?

• “functions are functions”?



Representing Abstraction

• Solution: to make an abstraction,
• Replace the hole(s) an abstraction refers to with a variable

• Say which variable the abstraction refers to

• Let’s also use some arbitrary particular symbol to indicate that we’re 
making an abstraction, just to make parsing easier.

λx. (λy. “x are y”)



Representing Application

• Just put the abstraction next to the thing you want to apply it to.

• In particular: abstraction on the left, thing on the right

((λx. (λy. “x are y”)) functions) values

• Is that all we need to formalize about this calculus?

• We want these expressions to be “equal” in some sense:

((λx. (λy. “x are y”)) functions) values ≡ “functions are values”

So we still need to formalize this notion of “equality”



Specifying What We Want to be “Equal”

• There are a lot of subtly different ways to do this

• I’m going to do what I consider the most satisfying approach, from a 
PL theory perspective:

• Defining a small-step dynamics for lambda calculus, and expressing 
equality in terms of it
• I’ll actually discuss a few different ways to define the dynamics



The Core of the Dynamics

There are a few rules that people find so interesting that there are 
names for them:



The Core of the Dynamics

I don’t find α or η particularly interesting



Completing the Dynamics: Lazy, Deterministic

Consider evaluating this expression if we only have the β rule:

((λx. (λy. “x are y”)) functions) values

Problem: this expression can’t step because the expression in the 
function position isn’t a lambda



Completing the Dynamics: Lazy, Deterministic

Solution:



Completing the Dynamics: Lazy, Deterministic



Completing the Dynamics: More Traditional



Defining Equivalence using Dynamics



Definability
Lambda calculus supports every feature you’ve seen in programming languages



Definability

• Features of Lambda++ which we’ll express in lambda calculus:
• Tuples

• Sums

• Fixed points (what?)

• The key to defining data structures in lambda calculus:
Asking how those data structures are used

A lot of the time it’s just a matter of continuation-passing style and currying



Definability: Tuples

How is a tuple used?

So we need the tuple “usage” form to fill in the holes in e2 with the 
elements of the tuple

So this will appear somewhere in the “usage” form for tuples:

And it’ll need to get applied to the elements of the tuple



Definability: Tuples



Definability: Tuples



Definability: Tuples



Definability: Tuples



Definability: Tuples



Definability: Sums

How is a sum injection used?

So we need the sum “usage” form to select one of the branches and fill 
in the corresponding hole

So these will appear somewhere in the usage form, and one of them 
will need to be applied:



Definability: Sums



Definability: Sums



Definability: Sums



Definability: Sums



Definability: Fixed Points

First of all, what is a fixed point?

For example:
fix fact is

fn 0 => 1
| n => n * fact (n – 1)



Definability: Fixed Points

So we’ll give

to whatever we use to achieve fixed points. Let’s call it Y.

So we want



Definability: Fixed Points

Claim: If we let

then this equivalence will hold.



Definability: Fixed Points

Goal:



Definability: Fixed Points

Goal:

Y(F)



Definability: Fixed Points

Goal:



Definability: Fixed Points

Goal:



Definability: Fixed Points

Goal:



Definability: Fixed Points


