
Password: “kind”

Modules
=

Structures & Functors

Back to the beginning: Interfaces (in 15-122)

//typedef _____* stack_t;

stack_t empty_stack();

int size(stack_t S);

void push(stack_t S, int i);

int pop(stack_t S);

Back to the beginning: Interfaces (in 15-122)

struct stack {

int value;

struct stack* next;

};

typedef struct stack* stack_t;

stack_t empty_stack() {

…

Back to the beginning: Interfaces (in 15-122)

int client_function(stack_t S) {

return S->value;

}

Doesn’t r e s p e c t t h e i n t e r f a c e

SML is better

signature STACK = sig

type stack

val empty_stack : unit -> stack

val size : stack -> int

val push : stack -> int -> unit

val pop : stack -> unit

end

structure Stack :> STACK = struct

type stack = list ref

fun empty_stack () =

…

end

fun client_function(s : Stack.stack) = List.hd (!s) (* Type error *)

How are modules typechecked?

To check M :> S,

1. Find the type that the dynamic portion of S represents. Call this tau’.

2. Find the type of the dynamic portion of M, rearranging, deleting, or
monomorphizing fields as necessary to get it to be similar to tau’. Call this tau.

3. Get the least general kind of the static portion of M. Call this k.

4. Get the kind that the static portion of S represents. Call this k’.

5. Check if k is a subkind of k’.

6. Check if tau is equal to tau’.

Steps 1 & 2
1. Find the type of the dynamic portion of M, rearranging, deleting, or

monomorphizing fields as necessary. Call this tau.

2. Find the type that the dynamic portion of S represents. Call this tau’.

Signatures, Signatures, Signatures

A signature specifies

1. Abstract types that must be defined

2. Concrete type definitions

3. Exception declarations

4. The types of values that must be defined

A signature not only gives the types of values in a structure, it gives the
types of types in that structure.

Anatomy of a signature

signature S = sig

type t

type s = int

type v = t

val x : t

val h : t -> int

val g : t -> s

val f : t -> s -> v

end

Static Component (types(?) of types)

Dynamic Component (types of values)

Type of the dynamic component

Think of it like a record

type S_dynamic = {

x : t,

h : t -> int,

g : t -> s,

f : t -> s -> v

}

Depends on the type of the static component!

Quick review of records

type r = {

x : int,

f : bool -> int,

y : unit

}

val v : r = {x=10,

f=(fn _ => 10),

y=()}

Steps 3 & 4
3. Get the least general kind of the static portion of M. Call this k.

4. Get the kind that the static portion of S represents. Call this k’.

Anatomy of a signature

signature S = sig

type t

type s = int

type v = t

val x : t

val h : t -> int

val g : t -> s

val f : t -> s -> v

end

Static Component (types(?) of types)

Dynamic Component (types of values)

Kind of the static component

A type of types!

The “static” component

Kinds

Kinds describe

• Types int :: Type

• Functions on types list :: Type -> Type

• Tuples of types (int, char) :: Type * Type

• Records of types {t=int, b=bool} :: {t :: Type, b :: Type}

• Singletons (more on this later) int :: S(int)

• Dependent Records {t=int, b=t} :: {t :: Type, b :: S(t)}

Kinds
Here are some types:

Here are some kinds:

.

Types Values

int 10, 98317, 15312, 15417

int * bool (10, true), (0, false)

bool list [true, false, true], [true], []

(char, string) either INR “hype for types”, INL #”c”

Kinds Types

Type (usually written T) int, int list, (char, string) either, int * bool

Type -> Type list, option, tree

Types * Type (char, string), (int, int)

Type * Type -> Type either

In a signature In a structure

type t

type ‘a s

type v

Describes the kind

{ t :: Type,

s :: (Type -> Type),

v :: Type }

type t = int

type ‘a s = ‘a list

type v = bool

Describes the type

{t=int, s=list, v=bool}

What about this?

signature S = sig

type t

type s = int

type v = t

end

Dependent Kinds

A dependent kind is a kind that depends on a type.

Motivation:

signature S = sig

type t = int

end

The kind of t should depend on int. The kind of t should state that t has to be int.

Singleton Kinds

Kinds that specify what (single) type inhabits them

Denoted S(type)

Examples:

int :: S(int)

bool :: S(bool)

int list :: S(int list)

Invented by Bob Harper
and Chris Stone

Dependent Record* Kinds

Later fields in the record type and kind can reference earlier fields

{t=int, s=t} :: {t :: Type, s :: S(t)}

* (Usually called dependent pairs and denoted ∏(α::k1).k2)

In a signature In a structure

type t

type u = int

type v = t

Describes the kind

{ t :: Type,

u :: S(int),

v :: S(t) }

type t = int

type u = bool

type v = t

Describes the type

{t=int, u=bool, v=t}

In a signature In a structure

type t

type u = int

type v = t

Describes the kind

{ t :: Type,

u :: S(int),

v :: S(t) }

type t = int

type u = bool

type v = t

Describes the type

{t=int, u=bool, v=t}

The least general kind of this type is

{t :: S(int), u :: S(bool), v ::
S(t)}

This is a subkind of the signature’s kind, since
every type with kind S(int) also has kind Type.

Steps 5 & 6
5. Check if k is a subkind of k’.

6. Check if tau is equal to tau’.

Check it

signature S = sig

type t

type s = int

val f : t -> s -> bool

end

structure M = struct

type t = bool

type s = int

fun f b _ = b

end

Sstatic = {t :: Type, s :: S(int)}

Sdynamic = {f : t -> s -> bool}

Mstatic = {t :: S(bool), s :: S(int)}

Mdynamic = {f : bool -> int -> bool}

Mstatic <:: Sstatic

Sdynamic = Mdynamic

Using a structure

signature S = sig

type t

type s = int

type v = t

val x : t

val h : t -> int

val g : t -> s

val f : t -> v

end

∃{t::Type,

s::S(int),

v::S(t)}.

{x : t,

h : t -> int,

g : t -> s,

f : t -> v}

Existential type

Static Component

Dynamic
Component

Using a structure

M.x

M.g 10

M.h 10

M : ∃{t::Type,

s::S(int),

v::S(t)}.

{x : t,

h : t -> int,

g : s -> int,

f : t -> v}

