
Hype for Types
HW 07

Due 15 October 2019

Question 1
Recall from lecture that we defined a model of DPDL to be a set X equipped with partial
functions ‖π‖ : X ⇀ X for each π ∈ Π (where Π was our set of programs), and for each
propositional letter p, a set JpK ⊆ X, the extension of p, or the set of “all those states x ∈ X
where p is true”. We then recursively defined the extensions for various logical connectives:

x ∈ J¬ϕK ⇐⇒ x 6∈ JϕK
x ∈ Jϕ ∧ ψK ⇐⇒ x ∈ JϕK ∩ JψK
x ∈ Jϕ → ψK ⇐⇒ x 6∈ JϕK or x ∈ JψK
x ∈ J [π]ϕ K ⇐⇒ ‖π‖ (x) ∈ JϕK or ‖π‖ (x) is undefined

x ∈ J 〈π〉ϕ K ⇐⇒ x ∈ J¬[π]¬ϕK

So: what has to be true about the partial function ‖π‖ at a state x in order for it to be
the case that x ∈ J [π]ϕ K but x 6∈ J 〈π〉ϕ K? Why?

Question 2
Annotate the following piece of C-like code with the appropriate Hoare Logic annotations to
prove that it correctly computes n!. Assume n is given some integer value (but put in the
correct precondition!). Like the example done in lecture, the final { } doesn’t need to literally
say that res = n!, but it should clearly imply it.

{ }
i:=n;

res:=1;

{ }
while (i>0) do (

{ }
res := res * i;

i := i-1

{ }
)

{ }

1


