
Dynamic Logic

How loops are actually recursion
Hype for Types

Jacob Neumann

08 October 2019

1



Dynamic Logic is everywhere

Dynamic Logic

2



Dynamic Logic is everywhere

PL Theory

Dynamic Logic

3



Dynamic Logic is everywhere

PL Theory

Complexity Theory

Dynamic Logic

4



Dynamic Logic is everywhere

PL Theory

Math

Complexity Theory

Dynamic Logic

5



Dynamic Logic is everywhere

PL Theory

Math

Modal Logic

Complexity Theory

Dynamic Logic

6



Dynamic Logic is everywhere

PL Theory

Math

Modal Logic

Philosophy

Complexity Theory

Dynamic Logic

7



Table of Contents

1 Syntax and Semantics

2 Deterministic PDL

3 Proving Behavior in DPDL

4 Hoare Logic

5 Other Cool Stuff

8



IMPERATIVE CODE AHEAD

(also math)

9



IMPERATIVE CODE AHEAD

(also math)

10



IMPERATIVE CODE AHEAD

(also math)

11



Section 1

Syntax and Semantics

12



Some philosophy...

Question: What is programming?

(One possible) answer:

Programming is the art of communicating with computers

We communicate with computers using otherwise-meaningless strings
of symbols

13



Some philosophy...

Question: What is programming?

(One possible) answer:

Programming is the art of communicating with computers

We communicate with computers using otherwise-meaningless strings
of symbols

14



Some philosophy...

Question: What is programming?

(One possible) answer:

Programming is the art of communicating with computers

We communicate with computers using otherwise-meaningless strings
of symbols

15



Some philosophy...

while true: print("AHHHH")

fun fact 0 = 1

001001101010001

(lambda (arg) (+ arg 1))

/([a-z0-9\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})/

16



Some philosophy...

while true: print("AHHHH")

fun fact 0 = 1

001001101010001

(lambda (arg) (+ arg 1))

/([a-z0-9\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})/

17



Some philosophy...

while true: print("AHHHH")

fun fact 0 = 1

001001101010001

(lambda (arg) (+ arg 1))

/([a-z0-9\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})/

18



Some philosophy...

while true: print("AHHHH")

fun fact 0 = 1

001001101010001

(lambda (arg) (+ arg 1))

/([a-z0-9\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})/

19



Some philosophy...

while true: print("AHHHH")

fun fact 0 = 1

001001101010001

(lambda (arg) (+ arg 1))

/([a-z0-9\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})/

20



Some philosophy...

while true: print("AHHHH")

fun fact 0 = 1

001001101010001

(lambda (arg) (+ arg 1))

/([a-z0-9\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})/

21



S stands for...

The symbols used in a language is called the syntax.

The study of how to assign computational meaning to these symbols
is called semantics.

Formally specifying semantics for our programming languages allows
us to mathematically prove properties about how our code works. This
allows us to:

Be sure our code will return the right result

Know how long our code will take to run

Be sure that we won’t run into unforeseen bugs at runtime

22



S stands for...

The symbols used in a language is called the syntax.

The study of how to assign computational meaning to these symbols
is called semantics.

Formally specifying semantics for our programming languages allows
us to mathematically prove properties about how our code works. This
allows us to:

Be sure our code will return the right result

Know how long our code will take to run

Be sure that we won’t run into unforeseen bugs at runtime

23



S stands for...

The symbols used in a language is called the syntax.

The study of how to assign computational meaning to these symbols
is called semantics.

Formally specifying semantics for our programming languages allows
us to mathematically prove properties about how our code works. This
allows us to:

Be sure our code will return the right result

Know how long our code will take to run

Be sure that we won’t run into unforeseen bugs at runtime

24



S stands for...

The symbols used in a language is called the syntax.

The study of how to assign computational meaning to these symbols
is called semantics.

Formally specifying semantics for our programming languages allows
us to mathematically prove properties about how our code works. This
allows us to:

Be sure our code will return the right result

Know how long our code will take to run

Be sure that we won’t run into unforeseen bugs at runtime

25



S stands for...

The symbols used in a language is called the syntax.

The study of how to assign computational meaning to these symbols
is called semantics.

Formally specifying semantics for our programming languages allows
us to mathematically prove properties about how our code works. This
allows us to:

Be sure our code will return the right result

Know how long our code will take to run

Be sure that we won’t run into unforeseen bugs at runtime

26



S stands for...

The symbols used in a language is called the syntax.

The study of how to assign computational meaning to these symbols
is called semantics.

Formally specifying semantics for our programming languages allows
us to mathematically prove properties about how our code works. This
allows us to:

Be sure our code will return the right result

Know how long our code will take to run

Be sure that we won’t run into unforeseen bugs at runtime

27



Operational vs. Denotational

There are two main approaches to specifying programming language
semantics: operational semantics and denotational semantics.

Operational semantics specifies the steps a program takes in
executing code

s 7→ s ′ s ′ 7→∗ s ′′

s 7→∗ s ′′

Denotational semantics interprets the syntax of a programming
language as a mathematical object

‖π‖ : X ⇀ X

In this lecture, I’ll be focusing on the denotational approach.

28



Operational vs. Denotational

There are two main approaches to specifying programming language
semantics: operational semantics and denotational semantics.

Operational semantics specifies the steps a program takes in
executing code

s 7→ s ′ s ′ 7→∗ s ′′

s 7→∗ s ′′

Denotational semantics interprets the syntax of a programming
language as a mathematical object

‖π‖ : X ⇀ X

In this lecture, I’ll be focusing on the denotational approach.

29



Operational vs. Denotational

There are two main approaches to specifying programming language
semantics: operational semantics and denotational semantics.

Operational semantics specifies the steps a program takes in
executing code

s 7→ s ′ s ′ 7→∗ s ′′

s 7→∗ s ′′

Denotational semantics interprets the syntax of a programming
language as a mathematical object

‖π‖ : X ⇀ X

In this lecture, I’ll be focusing on the denotational approach.

30



Operational vs. Denotational

There are two main approaches to specifying programming language
semantics: operational semantics and denotational semantics.

Operational semantics specifies the steps a program takes in
executing code

s 7→ s ′ s ′ 7→∗ s ′′

s 7→∗ s ′′

Denotational semantics interprets the syntax of a programming
language as a mathematical object

‖π‖ : X ⇀ X

In this lecture, I’ll be focusing on the denotational approach.

31



Section 2

Deterministic PDL

32



DPDL

Deterministic Propositional Dynamic Logic (DPDL) is a formal
semantics for interpreting a basic programming language.

It consists of:

A state space

Interpretations of all the programs as partial functions on the state
space

A apparatus for formulating logical statements about the state space

33



DPDL

Deterministic Propositional Dynamic Logic (DPDL) is a formal
semantics for interpreting a basic programming language.It consists of:

A state space

Interpretations of all the programs as partial functions on the state
space

A apparatus for formulating logical statements about the state space

34



DPDL

Deterministic Propositional Dynamic Logic (DPDL) is a formal
semantics for interpreting a basic programming language.It consists of:

A state space

Interpretations of all the programs as partial functions on the state
space

A apparatus for formulating logical statements about the state space

35



DPDL

Deterministic Propositional Dynamic Logic (DPDL) is a formal
semantics for interpreting a basic programming language.It consists of:

A state space

Interpretations of all the programs as partial functions on the state
space

A apparatus for formulating logical statements about the state space

36



The State Space

We mathematically model a computer as a set X of internal states (or
configurations). The behavior of our programs will depend on the state of
the computer.

X is often either finite or countably infinite, although in some
applications we will want to have more states.

37



The State Space

We mathematically model a computer as a set X of internal states (or
configurations). The behavior of our programs will depend on the state of
the computer.

X is often either finite or countably infinite, although in some
applications we will want to have more states.

38



The State Space

39



The Programs

Let Π = {π0, π1, . . .} be a set of “program names”.

Each program symbol π ∈ Π denotes a partial function on our state
space. We write this as:

‖π‖ : X ⇀ X

So, for each state x ∈ X , “executing π at x” will either succeed
(terminate) and result in a new state ‖π‖ (x), or it will crash (encoded by
‖π‖ (x) being undefined).

40



The Programs

Let Π = {π0, π1, . . .} be a set of “program names”.

Each program symbol π ∈ Π denotes a partial function on our state
space. We write this as:

‖π‖ : X ⇀ X

So, for each state x ∈ X , “executing π at x” will either succeed
(terminate) and result in a new state ‖π‖ (x), or it will crash (encoded by
‖π‖ (x) being undefined).

41



The Programs

π0

π1

42



The Programs

π0

π1

43



The Programs

π0

π1

44



The Propositions

Let Φ = {p0, p1, . . .} be a countable set of “propositional variables”.
These propositional variables denote logical statements we might want to
make about a state x .

Each propositional variable p ∈ Φ denotes a subset of our state space.
We write this as:

JpK ⊆ X

Think of JpK as the set of states where p is true.

45



The Propositions

Let Φ = {p0, p1, . . .} be a countable set of “propositional variables”.
These propositional variables denote logical statements we might want to
make about a state x .

Each propositional variable p ∈ Φ denotes a subset of our state space.
We write this as:

JpK ⊆ X

Think of JpK as the set of states where p is true.

46



The Propositions

47



The Propositions

JpK

48



The Propositions

JpK
p

p p

p

p

p

49



The Propositions

JpK
p

¬p

¬p

¬p

¬p

p

¬p

¬p

p

p

p

¬p

¬p

p

50



Expanding The Propositions

We can make the set of “statements” more interesting, using
recursive definitions!

If ϕ is some statement, then ¬ϕ is its negation: the statement that ϕ
is not true:

x ∈ J¬ϕK ⇐⇒ x 6∈ JϕK

If ϕ and ψ are some statements, then ϕ ∧ ψ is their conjunction: the
statement that both ϕ and ψ are true:

x ∈ Jϕ ∧ ψK ⇐⇒ x ∈ JϕK and x ∈ JψK

51



Expanding The Propositions

We can make the set of “statements” more interesting, using
recursive definitions!

If ϕ is some statement, then ¬ϕ is its negation: the statement that ϕ
is not true:

x ∈ J¬ϕK ⇐⇒ x 6∈ JϕK

If ϕ and ψ are some statements, then ϕ ∧ ψ is their conjunction: the
statement that both ϕ and ψ are true:

x ∈ Jϕ ∧ ψK ⇐⇒ x ∈ JϕK and x ∈ JψK

52



Expanding The Propositions

We can make the set of “statements” more interesting, using
recursive definitions!

If ϕ is some statement, then ¬ϕ is its negation: the statement that ϕ
is not true:

x ∈ J¬ϕK ⇐⇒

x 6∈ JϕK

If ϕ and ψ are some statements, then ϕ ∧ ψ is their conjunction: the
statement that both ϕ and ψ are true:

x ∈ Jϕ ∧ ψK ⇐⇒ x ∈ JϕK and x ∈ JψK

53



Expanding The Propositions

We can make the set of “statements” more interesting, using
recursive definitions!

If ϕ is some statement, then ¬ϕ is its negation: the statement that ϕ
is not true:

x ∈ J¬ϕK ⇐⇒ x 6∈ JϕK

If ϕ and ψ are some statements, then ϕ ∧ ψ is their conjunction: the
statement that both ϕ and ψ are true:

x ∈ Jϕ ∧ ψK ⇐⇒ x ∈ JϕK and x ∈ JψK

54



Expanding The Propositions

We can make the set of “statements” more interesting, using
recursive definitions!

If ϕ is some statement, then ¬ϕ is its negation: the statement that ϕ
is not true:

x ∈ J¬ϕK ⇐⇒ x 6∈ JϕK

If ϕ and ψ are some statements, then ϕ ∧ ψ is their conjunction: the
statement that both ϕ and ψ are true:

x ∈ Jϕ ∧ ψK ⇐⇒ x ∈ JϕK and x ∈ JψK

55



Expanding The Propositions

We can make the set of “statements” more interesting, using
recursive definitions!

If ϕ is some statement, then ¬ϕ is its negation: the statement that ϕ
is not true:

x ∈ J¬ϕK ⇐⇒ x 6∈ JϕK

If ϕ and ψ are some statements, then ϕ ∧ ψ is their conjunction: the
statement that both ϕ and ψ are true:

x ∈ Jϕ ∧ ψK ⇐⇒

x ∈ JϕK and x ∈ JψK

56



Expanding The Propositions

We can make the set of “statements” more interesting, using
recursive definitions!

If ϕ is some statement, then ¬ϕ is its negation: the statement that ϕ
is not true:

x ∈ J¬ϕK ⇐⇒ x 6∈ JϕK

If ϕ and ψ are some statements, then ϕ ∧ ψ is their conjunction: the
statement that both ϕ and ψ are true:

x ∈ Jϕ ∧ ψK ⇐⇒ x ∈ JϕK and x ∈ JψK

57



Expanding The Propositions

If ϕ is a statement and π ∈ Π is some program name, then [π]ϕ is the
statement “if π terminates, then ϕ will be true after π terminates”:

x ∈ J [π]ϕ K ⇐⇒

‖π‖ (x) ∈ JϕK or ‖π‖ (x) is undefined

ϕ

π π

The formula 〈π〉ϕ, which is defined to be ¬[π]¬ϕ, expresses the statement
“π terminates, and results in a ϕ state”.

58



Expanding The Propositions

If ϕ is a statement and π ∈ Π is some program name, then [π]ϕ is the
statement “if π terminates, then ϕ will be true after π terminates”:

x ∈ J [π]ϕ K ⇐⇒ ‖π‖ (x) ∈ JϕK or ‖π‖ (x) is undefined

ϕ

π π

The formula 〈π〉ϕ, which is defined to be ¬[π]¬ϕ, expresses the statement
“π terminates, and results in a ϕ state”.

59



Expanding The Propositions

If ϕ is a statement and π ∈ Π is some program name, then [π]ϕ is the
statement “if π terminates, then ϕ will be true after π terminates”:

x ∈ J [π]ϕ K ⇐⇒ ‖π‖ (x) ∈ JϕK or ‖π‖ (x) is undefined

ϕ

π π

The formula 〈π〉ϕ, which is defined to be ¬[π]¬ϕ, expresses the statement
“π terminates, and results in a ϕ state”.

60



Expanding The Propositions

If ϕ is a statement and π ∈ Π is some program name, then [π]ϕ is the
statement “if π terminates, then ϕ will be true after π terminates”:

x ∈ J [π]ϕ K ⇐⇒ ‖π‖ (x) ∈ JϕK or ‖π‖ (x) is undefined

ϕ

π π

The formula 〈π〉ϕ, which is defined to be ¬[π]¬ϕ, expresses the statement
“π terminates, and results in a ϕ state”.

61



Sanity Check: What does this formula say?

ϕ → 〈π〉ψ

(here, p → q is used as an abbreviation for ¬p ∨ q).

REQUIRES: ϕ
ENSURES: ψ

62



Sanity Check: What does this formula say?

ϕ → 〈π〉ψ

(here, p → q is used as an abbreviation for ¬p ∨ q).

REQUIRES: ϕ
ENSURES: ψ

63



Expanding The Program Suite

To encode (and study) more interesting behavior, we can recursively
define new programs out of old ones:

Given programs π1 and π2, we can make the program π1;π2, and give
it the following semantics:

‖π1;π2‖ (x) = ‖π2‖
(
‖π1‖ (x)

)
Given programs π1 and π2, and a formula ϕ, we can make the
program if ϕ then π1 else π2, with the following semantics:

‖if ϕ then π1 else π2‖ (x) =

{
‖π1‖ (x) if x ∈ JϕK
‖π2‖ (x) if x 6∈ JϕK

64



Expanding The Program Suite

To encode (and study) more interesting behavior, we can recursively
define new programs out of old ones:

Given programs π1 and π2, we can make the program π1;π2, and give
it the following semantics:

‖π1;π2‖ (x) = ‖π2‖
(
‖π1‖ (x)

)

Given programs π1 and π2, and a formula ϕ, we can make the
program if ϕ then π1 else π2, with the following semantics:

‖if ϕ then π1 else π2‖ (x) =

{
‖π1‖ (x) if x ∈ JϕK
‖π2‖ (x) if x 6∈ JϕK

65



Expanding The Program Suite

To encode (and study) more interesting behavior, we can recursively
define new programs out of old ones:

Given programs π1 and π2, we can make the program π1;π2, and give
it the following semantics:

‖π1;π2‖ (x) = ‖π2‖
(
‖π1‖ (x)

)
Given programs π1 and π2, and a formula ϕ, we can make the
program if ϕ then π1 else π2, with the following semantics:

‖if ϕ then π1 else π2‖ (x) =

{
‖π1‖ (x) if x ∈ JϕK
‖π2‖ (x) if x 6∈ JϕK

66



Expanding The Program Suite

To encode (and study) more interesting behavior, we can recursively
define new programs out of old ones:

Given programs π1 and π2, we can make the program π1;π2, and give
it the following semantics:

‖π1;π2‖ (x) = ‖π2‖
(
‖π1‖ (x)

)
Given programs π1 and π2, and a formula ϕ, we can make the
program if ϕ then π1 else π2, with the following semantics:

‖if ϕ then π1 else π2‖ (x) =

{
‖π1‖ (x) if x ∈ JϕK
‖π2‖ (x) if x 6∈ JϕK

67



Expanding The Program Suite

Given a program π and a formula ϕ, we can make the program
while ϕ do π, with the following semantics:

‖while ϕ do π‖ (x) =

{
x if x 6∈ JϕK
‖while ϕ do π‖

(
‖π‖ (x)

)
if x ∈ JϕK

68



Expanding The Program Suite

Given a program π and a formula ϕ, we can make the program
while ϕ do π, with the following semantics:

‖while ϕ do π‖ (x) =

{
x if x 6∈ JϕK
‖while ϕ do π‖

(
‖π‖ (x)

)
if x ∈ JϕK

69



What we now have

So we have given semantics for a simple programming language, with:

A (possibly large) set of program states

Whatever basic programs we might want

Sequencing, conditionals, and loops

A logical syntax to talk about state properties before and after
executing a function

70



What we now have

So we have given semantics for a simple programming language, with:

A (possibly large) set of program states

Whatever basic programs we might want

Sequencing, conditionals, and loops

A logical syntax to talk about state properties before and after
executing a function

71



What we now have

So we have given semantics for a simple programming language, with:

A (possibly large) set of program states

Whatever basic programs we might want

Sequencing, conditionals, and loops

A logical syntax to talk about state properties before and after
executing a function

72



What we now have

So we have given semantics for a simple programming language, with:

A (possibly large) set of program states

Whatever basic programs we might want

Sequencing, conditionals, and loops

A logical syntax to talk about state properties before and after
executing a function

73



What we now have

So we have given semantics for a simple programming language, with:

A (possibly large) set of program states

Whatever basic programs we might want

Sequencing, conditionals, and loops

A logical syntax to talk about state properties before and after
executing a function

74



Section 3

Proving Behavior in DPDL

75



Based on how we set up the logic, the following rules are true at
every state of every model, for any programs π, π1, π2 and any formulas
ϕ,ψ, θ:

(ϕ → [π1]ψ) (ψ → [π2]θ)

ϕ → [π1;π2]θ

(ϕ → [π1]ψ) (¬ϕ → [π2]ψ)

[if ϕ then π1 else π2]ψ

(ϕ ∧ ψ) → [π]ψ

ψ → [while ϕ do π](¬ϕ ∧ ψ)

76



Based on how we set up the logic, the following rules are true at
every state of every model, for any programs π, π1, π2 and any formulas
ϕ,ψ, θ:

(ϕ → [π1]ψ) (ψ → [π2]θ)

ϕ → [π1;π2]θ

(ϕ → [π1]ψ) (¬ϕ → [π2]ψ)

[if ϕ then π1 else π2]ψ

(ϕ ∧ ψ) → [π]ψ

ψ → [while ϕ do π](¬ϕ ∧ ψ)

77



Based on how we set up the logic, the following rules are true at
every state of every model, for any programs π, π1, π2 and any formulas
ϕ,ψ, θ:

(ϕ → [π1]ψ) (ψ → [π2]θ)

ϕ → [π1;π2]θ

(ϕ → [π1]ψ) (¬ϕ → [π2]ψ)

[if ϕ then π1 else π2]ψ

(ϕ ∧ ψ) → [π]ψ

ψ → [while ϕ do π](¬ϕ ∧ ψ)

78



Based on how we set up the logic, the following rules are true at
every state of every model, for any programs π, π1, π2 and any formulas
ϕ,ψ, θ:

(ϕ → [π1]ψ) (ψ → [π2]θ)

ϕ → [π1;π2]θ

(ϕ → [π1]ψ) (¬ϕ → [π2]ψ)

[if ϕ then π1 else π2]ψ

(ϕ ∧ ψ) → [π]ψ

ψ → [while ϕ do π](¬ϕ ∧ ψ)

79



Section 4

Hoare Logic

80



From PDL to Hoare Logic

It’s kinda tedious to write ϕ → [π]ψ over and over, and so we can
adopt the precondition-postcondition notation established by Tony Hoare:
{ϕ}π {ψ}.

Hoare Logic is more powerful than PDL because it allows for variable
binding and integer arithmetic. For example, we can say stuff like:

{n ≥ 0} i := n {i ≥ 0}{
a = bi

}
a := a ∗ b

{
a = bi+1

}

81



From PDL to Hoare Logic

It’s kinda tedious to write ϕ → [π]ψ over and over, and so we can
adopt the precondition-postcondition notation established by Tony Hoare:
{ϕ}π {ψ}.

Hoare Logic is more powerful than PDL because it allows for variable
binding and integer arithmetic. For example, we can say stuff like:

{n ≥ 0} i := n {i ≥ 0}

{
a = bi

}
a := a ∗ b

{
a = bi+1

}

82



From PDL to Hoare Logic

It’s kinda tedious to write ϕ → [π]ψ over and over, and so we can
adopt the precondition-postcondition notation established by Tony Hoare:
{ϕ}π {ψ}.

Hoare Logic is more powerful than PDL because it allows for variable
binding and integer arithmetic. For example, we can say stuff like:

{n ≥ 0} i := n {i ≥ 0}{
a = bi

}
a := a ∗ b

{
a = bi+1

}

83



Here are our rules from earlier, in the Hoare notation:

{ϕ}π1 {ψ} {ψ}π2 {θ}
{ϕ}π1;π2 {θ}

{ϕ}π1 {ψ} {¬ϕ}π2 {ψ}
{} if ϕ then π1 else π2 {ψ}

{ϕ ∧ ψ}π {ψ}
{ψ}while ϕ do π {¬ϕ ∧ ψ}

84



A 122-style example

i:=n;
res:=1;
(while (i>0)
do

res := res * b;
i := i-1

);

85



A 122-style example

i:=n;
res:=1;
(while (i>0)
do{

i > 0 ∧ i ≥ 0 ∧ res * bi = bn
}

res := res * b;
i := i-1{
i ≥ 0 ∧ res * bi = bn

}
);

86



A 122-style example

i:=n;
res:=1;{
i ≥ 0 ∧ res * bi = bn

}
(while (i>0)
do{

i > 0 ∧ i ≥ 0 ∧ res * bi = bn
}

res := res * b;
i := i-1{
i ≥ 0 ∧ res * bi = bn

}
);{
¬(i > 0) ∧ i ≥ 0 ∧ res * bi = bn

}

87



A 122-style example

{n ≥ 0}
i:=n;
res:=1;{
i ≥ 0 ∧ res * bi = bn

}
(while (i>0)
do{

i > 0 ∧ i ≥ 0 ∧ res * bi = bn
}

res := res * b;
i := i-1{
i ≥ 0 ∧ res * bi = bn

}
);{
¬(i > 0) ∧ i ≥ 0 ∧ res * bi = bn

}

88



Other Cool Stuff

Hoare Logic and DPDL are really only just the beginning of things you
can do with denotational and axiomatic semantics!

Nondeterministic program semantics (replace the partial functions
with binary relations)

Heap Allocation

Concurrency

Cost Semantics

More complex mathematics to make the modal logic more powerful
(topological structure, structure-preserving maps and category theory,
etc.)

89



Other Cool Stuff

Hoare Logic and DPDL are really only just the beginning of things you
can do with denotational and axiomatic semantics!

Nondeterministic program semantics (replace the partial functions
with binary relations)

Heap Allocation

Concurrency

Cost Semantics

More complex mathematics to make the modal logic more powerful
(topological structure, structure-preserving maps and category theory,
etc.)

90



Other Cool Stuff

Hoare Logic and DPDL are really only just the beginning of things you
can do with denotational and axiomatic semantics!

Nondeterministic program semantics (replace the partial functions
with binary relations)

Heap Allocation

Concurrency

Cost Semantics

More complex mathematics to make the modal logic more powerful
(topological structure, structure-preserving maps and category theory,
etc.)

91



Other Cool Stuff

Hoare Logic and DPDL are really only just the beginning of things you
can do with denotational and axiomatic semantics!

Nondeterministic program semantics (replace the partial functions
with binary relations)

Heap Allocation

Concurrency

Cost Semantics

More complex mathematics to make the modal logic more powerful
(topological structure, structure-preserving maps and category theory,
etc.)

92



Other Cool Stuff

Hoare Logic and DPDL are really only just the beginning of things you
can do with denotational and axiomatic semantics!

Nondeterministic program semantics (replace the partial functions
with binary relations)

Heap Allocation

Concurrency

Cost Semantics

More complex mathematics to make the modal logic more powerful
(topological structure, structure-preserving maps and category theory,
etc.)

93



Other Cool Stuff

Hoare Logic and DPDL are really only just the beginning of things you
can do with denotational and axiomatic semantics!

Nondeterministic program semantics (replace the partial functions
with binary relations)

Heap Allocation

Concurrency

Cost Semantics

More complex mathematics to make the modal logic more powerful
(topological structure, structure-preserving maps and category theory,
etc.)

94



Why is this in Hype for Types?

Remember the central idea of denotational semantics: interpret
computer programs as mathematical objects

We can do this for functional languages too!

In a few weeks, we’ll

Introduce the mathematical language of category theory
Develop denotational semantics for the simply-typed lambda calculus
inside certain nice categories
This approach can be extended to type theories which are much fancier
than simple lambda calculus (e.g. dependent type theory,
higher-inductive dependent type theory (homotopy type theory)). This
is an area of very active research.

So stay tuned...

95



Why is this in Hype for Types?

Remember the central idea of denotational semantics: interpret
computer programs as mathematical objects

We can do this for functional languages too!

In a few weeks, we’ll

Introduce the mathematical language of category theory
Develop denotational semantics for the simply-typed lambda calculus
inside certain nice categories
This approach can be extended to type theories which are much fancier
than simple lambda calculus (e.g. dependent type theory,
higher-inductive dependent type theory (homotopy type theory)). This
is an area of very active research.

So stay tuned...

96



Why is this in Hype for Types?

Remember the central idea of denotational semantics: interpret
computer programs as mathematical objects

We can do this for functional languages too!

In a few weeks, we’ll

Introduce the mathematical language of category theory
Develop denotational semantics for the simply-typed lambda calculus
inside certain nice categories
This approach can be extended to type theories which are much fancier
than simple lambda calculus (e.g. dependent type theory,
higher-inductive dependent type theory (homotopy type theory)). This
is an area of very active research.

So stay tuned...

97



Why is this in Hype for Types?

Remember the central idea of denotational semantics: interpret
computer programs as mathematical objects

We can do this for functional languages too!

In a few weeks, we’ll

Introduce the mathematical language of category theory
Develop denotational semantics for the simply-typed lambda calculus
inside certain nice categories
This approach can be extended to type theories which are much fancier
than simple lambda calculus (e.g. dependent type theory,
higher-inductive dependent type theory (homotopy type theory)). This
is an area of very active research.

So stay tuned...

98



Why is this in Hype for Types?

Remember the central idea of denotational semantics: interpret
computer programs as mathematical objects

We can do this for functional languages too!

In a few weeks, we’ll

Introduce the mathematical language of category theory

Develop denotational semantics for the simply-typed lambda calculus
inside certain nice categories
This approach can be extended to type theories which are much fancier
than simple lambda calculus (e.g. dependent type theory,
higher-inductive dependent type theory (homotopy type theory)). This
is an area of very active research.

So stay tuned...

99



Why is this in Hype for Types?

Remember the central idea of denotational semantics: interpret
computer programs as mathematical objects

We can do this for functional languages too!

In a few weeks, we’ll

Introduce the mathematical language of category theory
Develop denotational semantics for the simply-typed lambda calculus
inside certain nice categories

This approach can be extended to type theories which are much fancier
than simple lambda calculus (e.g. dependent type theory,
higher-inductive dependent type theory (homotopy type theory)). This
is an area of very active research.

So stay tuned...

100



Why is this in Hype for Types?

Remember the central idea of denotational semantics: interpret
computer programs as mathematical objects

We can do this for functional languages too!

In a few weeks, we’ll

Introduce the mathematical language of category theory
Develop denotational semantics for the simply-typed lambda calculus
inside certain nice categories
This approach can be extended to type theories which are much fancier
than simple lambda calculus (e.g. dependent type theory,
higher-inductive dependent type theory (homotopy type theory)). This
is an area of very active research.

So stay tuned...

101



Why is this in Hype for Types?

Remember the central idea of denotational semantics: interpret
computer programs as mathematical objects

We can do this for functional languages too!

In a few weeks, we’ll

Introduce the mathematical language of category theory
Develop denotational semantics for the simply-typed lambda calculus
inside certain nice categories
This approach can be extended to type theories which are much fancier
than simple lambda calculus (e.g. dependent type theory,
higher-inductive dependent type theory (homotopy type theory)). This
is an area of very active research.

So stay tuned...

102



Thank you!

103


	Syntax and Semantics
	Deterministic PDL
	Proving Behavior in DPDL
	Hoare Logic
	Other Cool Stuff

