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Note about learning category theory

Category theory can be a bit unusual to grasp at first – it’s not quite
like other styles of mathematics. I’ll try to mention a few of these
differences along the way.

There are a lot of details to be checked here (and a semester-long
course in category theory would teach you how to do this). For today,
try to focus on the bigger picture of what we’re doing. I’ll do my best
to indicate which details matter and which ones don’t.

Category theory often involves some very advanced mathematical
theory – don’t worry too much about understanding everything. But I
hope you’ll walk out of next lecture understanding why category
theory is an awesome and beautiful topic!
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Section 1

Motivation: A Theory of Functions
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A Bird’s-Eye View of SML
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A Bird’s-Eye View of SML
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Theorem

There exists a total function of type int→ bool.

Theorem

For all types τ , τ ′, there exist total functions fst : τ ∗ τ ′ → τ and
snd : τ ∗ τ ′ → τ ′

Theorem

For all types τ , there exists a unique function uτ : τ → unit
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op o is a (partial) binary operation on functions
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op o Theory

Notice:

(fn x=> x=2) o (fn b=> if b then 2 else 1) = idbool

This is an equation of functions, and it tells us information about the
types bool and int.
op o is important enough that it has it’s own theory.
The theory of op o is called category theory.
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Section 2

Categories
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Definition

A category C consists of:

A collection of objects X ,Y ,Z , . . .

A collection of morphisms f , g , h, each with a specified domain and
codomain (e.g. f : X → Z )

such that:

1 For each object X , there exists a morphism idX : X → X called the
identity morphism (on X )

2 For each pair of morphisms f : X → Y and g : Y → Z , there exists a
morphism (g ◦ f ) : X → Z , called the composition of g after f

3 Identity morphisms are units under composition: for all f : X → Y ,

idY ◦ f = f = f ◦ idX

4 Composition is associative: for all f : A→ B, g : B → C , h : C → D,

(h ◦ g) ◦ f = h ◦ (g ◦ f )
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Example 0: Types!

The type system of SML defines a category:

The objects are types

The morphisms are total functions

1 For any type τ , the identity morphism on τ is given by:

val idτ : τ → τ = fn x:τ => x

2 For f:X->Y, g:Y->Z, (g o f):X-> Z

3

idY o f = f = f o idX

4 op o is associative
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Example 1: Set

The collection of all sets is a category:

The objects are sets

The morphisms are total functions

1 For any set X , the function idX : X → X given by idX (x) = x is the
identity function

2 Composition is just the usual composition of functions.

3 Identity is a unit for composition

4 Function composition is associative
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But why?

As we’ll see, abstractly defining the notion of a “category” allows us
to specify a particular kind of structure: compositional structure.

Also, by making an abstract definition, we open up the possibility of
massively reducing redundancy in theorem proving: if I can prove
something holds for an arbitrary category, it automatically holds for
both sets and for SML types – I don’t have to prove it twice!

Also, notice that the definition of category never mentioned the
objects having “elements”. This is intentional. This forces us to adopt
a “pointfree” mindset, and define everything in terms of functions.
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Section 3

Isomorphisms
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Example: Number of elements

When do we say that two sets have the “same number of elements”?
Well, to account for the possibility of infinite sets, we make some
definition like the following:

Definition

Two sets X ,Y are said to be equinumerous if there exists a funtion
f : X → Y such that

Injectivity: For all x , x ′ ∈ X , if f (x) = f (x ′), then x = x ′

Surjectivity: For all y ∈ Y , there exists some x ∈ X such that
f (x) = y .

This definition sucks!!!! It constantly refers to the elements of X and Y !
Can we define equinumerosity pointfree?
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Pointfree Equinumerosity

Yes we can!

Definition

Two sets X ,Y are said to be equinumerous if there exist functions
f : X → Y and g : Y → X such that

g ◦ f = idX and f ◦ g = idY

In this case, f and g are called bijections.
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Generalization: Isos

Definition

Two objects X ,Y of a category C are said to be isomorphic if there exist
morphisms f : X → Y and g : Y → X such that

g ◦ f = idX and f ◦ g = idY

In this case, f and g are called isos.

Notice this is exactly the same definition as before! This fact is
summarized by saying:

Bijections are isos in the category of sets & functions
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Type Isos

The key strength of category theory is that we can take general notions
(like isos), and then study them in the categories that interest us!

So what’s an iso in the category of types?

Theorem

The types unit+unit and bool are isomorphic

Proof.

fun f(inl ())= true

| f(inr ())= false

fun g(b) = if b then inl() else inr()
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Section 4

Diagrams
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Commutative Diagrams

We can depict isos more graphically, using a commutative diagram:

X YidX

f

idY

g

“Commutative Diagrams” get their names from the fact that they’re
assumed to commute: any two paths through the diagram which start at
the same place and end at the same place (e.g. f ◦ g and idY both start
and end at Y ) are assumed to be equal.
Note that we usually don’t draw the identity arrows in commutative
diagrams – they’re left implicit.
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Example: Commutative Triangles

Consider the following diagram (in some category C):

X Y

Z

f

h
g

What does it mean to say that this diagram commutes?

g ◦ f = h
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Example: Commutative Squares

Consider the following diagram (in some category C):

W X

Y Z

f

h g

k

What does it mean to say that this diagram commutes?

g ◦ f = k ◦ h
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Section 5

Universal Properties

Jacob Neumann Category Theory 05 November 2019 24 / 42



Universal Properties

To talk about the interesting properties of various categories, we make use
of universal properties.

Assuming we have some commutative diagram:

A

W X

Y Z

q1

q2

f

h g

k
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Universal Properties

To talk about the interesting properties of various categories, we make use
of universal properties.
Assuming we have some commutative diagram:

A

W X

Y Z

q1

q2

f

h g

k

This implies other object/arrows (indicated by the dashed lines) must
exist, and commute with the rest of the diagram as depicted.

Jacob Neumann Category Theory 05 November 2019 26 / 42



Example: Composition

Composition is the simplest example of a universal property:

X Y

Z

f

g◦f
g

Read aloud: “For all objects X ,Y ,Z of a category C, and all morphisms
f : X → Y and g : Y → Z , there exists a morphism (g ◦ f ) : X → Z
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Example: Factorization

What does this diagram say?

U

X Y
f

“f can be written as g2 ◦ g1 for some g1 : X → U and some g2 : U → Y ”
“f factors through U”
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Example of Factorization

Theorem

A total SML function f : τ1 → τ2 is constant (in the sense that
f (x) = f (y) for all x , y : τ1) iff f factors through unit

unit

τ1 τ2f
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Sanity Break

Enjoy this picture of two puppies.
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