
Basic Dependent Typing

Disclaimer: Like anything else I’ve talked about in this class, the system presented
in this document is, at best, an incomplete fragment. Real implementations of
real dependent type systems (such as Idris) will handle things slightly differently.

The World of Types and Values
What is the difference between a value, like 3, and a type, like int? One answer
that immediately comes to mind is that types are used to describe values, which
are themselves primitive objects. These descriptions are then used to verify
properties of a program, like making sure that we never try to add "fish" and
true. In nearly any statically-typed programming language, “types” and “values”
live in two different worlds, and don’t overlap at all.

In many ways, a lot of fancy tricks and contructions used by late-stage functional
programmers (phantom types, monad transformers, etc) are in fact ways to lift
information from the value level to the type level, where the compiler can assist
us in ensuring that code is correct.

A major limitation of this approach is that most languages don’t have an
expressive enough type-level language to encode “interesting” properties about a
type. Recall the example of length-encoded lists in OCaml –

type z
type S of 'a

val cons: 'a * ('a, 'l) list -> ('a, 'l S) list
val append: ('a, 'l1) list -> ('a, 'l2) list -> ('a, ???) list

Even if we can encode the natural numbers into our typesystem, we have no
way of writing inductive functions on these types! In fact, we can’t do anything
besides apply constructors, identity or constant functions! While there are other,
less powerful tools we can add to our typesystem (typeclass elision, type families,
etc), the logical extreme would be to remove the distinction between types and
values entirely, so that type constructions can have the full expressive power of
our value language!

Note that this is slightly different from “lifting” the entire value world into the

1



type world, which would imply that the value world is still separate. Rather, we
are “dropping” all types and type constructors into the “value” world, making
them first-class objects that can be freely interspersed with “regular” values. For
example, we could write a function like this:

(* f: bool -> type *)
fun f true = int

| f false = bool

Of course, merging the type-level and value-level languages also means that we
can refer to these functions where a type is expected:

fun int_or_bool (b:bool) : f b =
if b then 0 else false

Notice that, unlike what could be accomplished with a GADT, the input type is
“normal”, and it’s the output type that’s parameterised over the input.

This means that we can now properly refer to regular values in our types:

type _ vec =
| Nil : ('a, 0) vec
| Cons : 'a * ('a, n) vec -> ('a, n+1) vec

. . . as well as use regular functions on those values:

val append : ('a, n) vec -> ('a, m) vec -> ('a, n+m) vec

Values with types in the vec family are the first we’ll see of the vaunted “depen-
dent data”, in which the type of the object depends on a value. Note that the
vec type constructor itself can be given a proper type in this system:

val vec : type * nat -> type

which tells the typechecker that we really are allowed to use the + operator in
the type of append.

What’s in a proof?
Recall the Curry-Howard isomorphism, which states that “types are theorems
and programs are proofs”. For example, the type A×B is analogous to a proof
of the theorem A ∧B (where A refers to the theorem represented by A) – if x is
a proof of A, and y is a proof of B, then the tuple (x, y) (really, having both
proofs) corresponds to having a proof of “A and B”. Similarly, sum types (disjoint
unions) correspond to “or”, and function arrows correspond to implication.

But these connectives (along with true and false) only correspond to a small
fragment of logic. In particular, they allow us to encode a propositional logic
over some other theory, which tends not to be very interesting – for one, pure
propositional logic is decidable.

2



To upgrade into first-order logic, then, we need to add binding connectives,
namely ∀ and ∃ (“forall” and “there exists”). What might proof terms for these
look like?

Consider the arithmetic sentence x > 2. As written, with no other context, this
isn’t really a “proposition” in the sense that it can’t really be true or false – we
need to know what x is! This is a proposition with a “hole” in it, that gets filled
by a particular value of x by some context.

In propositional logic, that’s it – these statements are meaningless, unless we
attach some external meaning to the symbol x. To use the language of logicians,
we say that the variable x is free, or unbound, which is to say that it hasn’t
been given a meaning yet. If we have a given value for x, say 4, then we can
transform (via substitution) the sentence x > 2 into the sentence 4 > 2, which
we can then evaluate for some truth value. We might say that a sentence with
free variables is a function from “values” to “propositions” whose action is
substitution. Alternatively, we can bind the variables via a quantifier like ∀ or ∃
– in a predicate like ∃(x ∈ N).x > 2, the variable x has some meaning, namely
that as a stand-in for some unknown value v bearing the property v > 2.

Higher-order proof terms
What does this mean in terms of promoting our Curry-Howard construction to
first-order logic?

Remember that distinct terms (expressions, values) of some type τ represent
distinct proofs of the proposition given by τ , and that propositions are defined
to be true (in our system) when such a proof exists. Correspondingly, there
exists a type for every proposition we might want to examine. Combined with
the prior observation about free variables, we find that x > 2 acts as a function
from integers to types! This suggests that this logic-/proof-based view has some
similiarities with our “single world” type system above. In fact, they coincide
completely!

Consider the predicate ∀(x : α).P (x) (where P (x) is some proposition with x as
a free variable). If this statement is true, then for any element x of type α, there
exists a proof of the proposition P (x). That is, we can generically produce a
term of type P (x), where x is arbitrary!

This should sound familiar – this is almost a description of a function! If we
have a term f : α→ β, it means that, given any x : α, the term f(x) has type β.
The big difference is that we’re allowing the proposition P (x) to depend on the
value x! This is a dependent function or dependent product type, and is denoted
as

∏
x:α

P (x)

3



which represents the predicate ∀(x : α).P (x) if P : α→ type.

As we’ve just noticed, a value of this term should be very similar to a regular
function. In fact, if we choose P (x) to be a constant function, say P (x) = β for
some type β, then we see that

∏
x:α

P (x) =
∏
x:α

β

is a “function” that takes terms of type α to terms of type β. That’s just a
regular function! So we can generalize our typical λ abstraction to produce a
dependent function type instead, where α→ β is shorthand for

∏
x:α β.

What about the predicate ∃(x : α).P (x)? In a constructive setting, proving this
entails producing the value x, along with a proof that it satisfies the proposition
P (x). That is, you can think of it as a value coupled with a proof. But a value
of some type is just another proof, of this other type! We already have an idea
of what a “pair of proofs” looks like under Curry-Howard – that’s just a tuple!

So the proposition ∃(x : α).P (x), given as the type

∑
x:α

P (x)

has a tuple as its proof term, where the first element is x, and the second element
has type P (x). These are the so-called dependent tuples, or dependent sums.
Just as before, we can recover our original product type by fixing P (x) = β,
giving us that α× β is shorthand for

∑
x:α β.

You may wonder why tuples (typically products) are dependent sums, while
functions (typically exponentials) are dependent products. One way to think
of it is that a “product” is an iterated sum, and an exponent is an iterated
product. Alternatively, you can think of binary sums and products as being
indexed by the values 0 and 1 (for example, the “0th” index of a tuple is its left
element), and we are simply generalizing the index type. Finally, we can recover
regular sums by parameterizing our sigma with the type 2 with elements true
and false – then inL x is shorthand for (false, x), and inR y is shorthand
for (true, y) (or vice versa).

Refinement types
A form that many real dependently-typed languages use are “refinement types”,
which allow us to annotate the types of functions to restrict their inhabitants
according to some proposition. For example, we might type a function like this:

('a -> bool) -> {v : ('a, n) vec} -> {v' : ('a, m) vec | m < n}

4



(it’s worth noting that the 'a and n in the type above are implicitly being
quantified over)

This is known as a refinement type, and is the syntax used by Idris and Liquid
Haskell, two type-based proof systems. In fact, when fully unrestricted, this is
equivalent to the construction above. The exact conversion is a bit involved so
we won’t detail it here1, but the type {x:a | P(x)} is effectively

∑
x:a P (x),

and function arrows {x:a} -> P(x) are
∏
x:a P (x).

Reflection
We’ve made references to types like “the type corresponding to the proposition
5 < 2”, but we haven’t specified what a proof of this may be! In general,
0th order propositions (those that don’t use ∀/

∏
or ∃/

∑
) don’t contain any

information content beyond their truth value. If “there exists some x such that
P (x)” is true, then we should, in principle, be able to produce the value x (in a
constructive setting). On the other hand, there is no “value” associated with
the truthhood of 2 < 3, not even an implicit one like a lambda abstraction.

In the past, we have used the “unit” type 1 containing only the value () to
stand in for types that are inhabited but contain no meaningful information. In
dependent type theory, we tend to instead call this value Refl, for “reflexivity”.
In particular, for any value x : α, we say that Reflα has type x = x. Note that,
in this case, x is a type-level value, which means that Reflnat also serves as a
witness to, say, 2+3 = 5. We can generalize this to arbitrary propositions, where
we can say that Refl inhabits the type true (really, () and 1), and that the
type false (void) has no inhabitants. So the type 2 < 3 stepts to the type true,
which is inhabited by Refl – so Refl is a proof of 2 < 3. On the other hand,
3 < 2 steps to false, which is a type with no inhabitants – so there cannot be a
closed-form proof of 3 < 2.

A note on decidability
Now that our types must also move towards a normal form, and that we must
know the normal form of a given type in order to typecheck a dependently-typed
program, a natural next question is whether typechecking is even possible in the
general case.

The original intuitionistic type theory as devised by Martin-Löf actually sidesteps
this issue in disallowing general recursion. Instead, the method of iteration was
induction, in which a “recursive call” was not actually a call to a function, but
instead was considered a parameter only available when defining an inductive
function. In this way it could be enforced that any “recursive call” was only

1Care needs to be taken regarding the parity of types when converting between refinements
and standard dependent types. Briefly, types to the left of a function arrow are considered to
be in negative position, and types to the right are in positive position (and this composes as
you’d expect), and the conversion is different when performed on positive vs negative types.

5



performed with parameters that were strictly structurally smaller, and that thus
the computation halted.

Of course, programmers typically enjoy having Turing completeness available to
them as a toole, and as such like to have general recursion as a tool. Languages
like Idris will instead implement a totality checker, which will refuse to typecheck
any code with type-level expressions that cannot be proven to halt.

Universality
One more issue remains unresolved – what is the type of type? If we allow
type: type, then you can, without too much difficulty, encode Girard’s Paradox
(a type-theory equivalent of the classic Russell’s Paradox) into the system, which
demonstrates the unsoundness. Some languages, like Haskell2, are fine with this
– these languages don’t style themselves as formal proof systems, and instead
view dependent types as a way to show correctness for programs, of which nearly
no real-world example will perform the contortions necessary to get an unsound
result.

To resolve this, however, we need to introduce a similar hierarchy as proposed
by Russell himself with his Theory of Types (which is actually unrelated to the
type theory discussed here). Instead of keeping a single type type to contain all
types, we actually produce a hierarchy typen, where type-1 is the type of values,
type0 is the type of “regular” types, and typen+1 contains the type typen. This
stratification is often defined such that typen+1 is a strict supertype of typen,
containing all “smaller” types but also some “larger” ones. In doing so, we can
then simply use the shorthand type to refer to the smallest typen such that
everything in question has this type.

Note that there does not exist a function mapping n to typen for all natural
numbers n – there is no type “large” enough to serve as its codomain. In fact,
these universes of type theory are not truly indexed by natural numbers at all,
but the specifics of this are beyond the scope of this paper.

Examples
The following examples and explanations are not written in any real-world
dependently-typed programming language known to the author. However, the
syntax and approach should be adaptable to most dependent languages without
much issue.

In the formal theory, any induction term must use the inductor (or “elimination
form”) of a given type to reduce it to strictly smaller syntactic components.

2Haskell isn’t actually dependent (yet), but you can lift a lot of expression-level properties
into the type-level language (with great difficulty) via language extensions, the typeclass system
and type families.

6



However, we will elide these, and instead use the more-familiar syntax of recursion
and pattern-matching. Then we can write

fun f 0 = e1
| f (s(n)) = e2

instead of the much more intimidating indnat(_, e1, λk, r.e2).

We’ll also use the following definitions:

fun (+) 0 m = m
| (+) (s(n)) m = s(n+m)

fun (<=) 0 m = true
| (<=) (s(n)) 0 = false
| (<=) (s(n)) (s(m)) = n <= m

Theorem proving
It is well known that, if n <= m, then there exists some k such that n+ k = m;
this is commonly known as “subtraction”. We will show that this is true for all
naturals n and m by producing a term of the appropriate type.

What is that type? The theorem might be phrased in first-order logic like this:

∀(n : nat).∀(m : nat).((n < m) =⇒ ∃(k : nat).n+ k = m)

Translating into the language of types, we then get

∏
n:nat

∏
m:nat

((n < m)→
∑
k:nat

(n+ k = m))

Now we need to write a type of this term. The outermost two connectives are
both

∏
, so we start with two lambda abstractions:

fun subtraction_proof n m = _todo

Now, we need to produce a value of type (n < m) →
∑
k:nat(n + k = m). In

fact, this is another function, so we add the next parameter:

fun subtraction_proof n m p = _todo

Now what? Let us outline the proof using natural language:

We proceed by induction.

If n = 0, then choose k = m. Then 0 + m = m by definition of (+).

Otherwise, n = s(x) for some x.

If m = 0, then we have that s(x) <= 0, a contradiction. So we must
have m = s(y) for some y. By definition of (<=), we have x <= y

7



from s(x) <= s(y), so there exists some k' such that x+k' = y by
the inductive hypothesis.

Choose k = k'. Then s(x) + k' = s(x+k') = s(y) by definition
of (+)

Let’s translate this into a formal proof using dependent types.

The first step is to case on whether n = 0. That sounds like a pattern match. . .

fun subtraction_proof 0 m p = _todo_z
| subtraction_proof (s(x)) m p = _todo_s

_todo_z should have type
∑
k:nat(0 + k = m), which is a tuple. In the proof, we

said "choose k = m, which suggests

fun subtraction_proof 0 m p = (m, _todo_proof)
| subtraction_proof (s(x)) m p = _todo_s

Finally, _todo_proof should have 0+m = m. Just our luck, this is exactly the
first clause of the definition of (+), so we can conclude this via Refl.

fun subtraction_proof 0 m p = (m, Refl : (0+m=m))
| subtraction_proof (s(x)) m p = _todo_s

(where we explicitly annotated the Refl type used for clarity)

Next up is _todo_s. Once again, we checked whether m was 0. . .

fun subtraction_proof 0 m p = (m, Refl : (0+m=m))
| subtraction_proof (s(x)) 0 p = _todo_m_z
| subtraction_proof (s(x)) (s(y)) p = _todo_m_s

If m = 0, then we said that this is a contradiction. How do we express that with
dependent types? Well, remember that we take in a proof that n <= m, which
in this case is the value p : s(x) <= 0. But as s(x) <= 0 evaluates to false
by definition of (<=), the type s(x) <= 0 is actually empty! So p is actually
an element of the void type, which we can eliminate via the abort (or absurd)
function that crashes the program when given a value of type void.

fun subtraction_proof 0 m p = (m, Refl : (0+m=m))
| subtraction_proof (s(x)) 0 p = abort p
| subtraction_proof (s(x)) (s(y)) p = _todo_m_s

Now for the tricky inductive step. We cited the inductive hypothesis on x and y,
which corresponds to a recursive call of subtraction_proof. But what p do we
use in this call?

Well, by definition, s(x) <= s(y) steps to x <= y, so they are actually the same
type! This means we can use the same p:

fun subtraction_proof 0 m p = (m, Refl : (0+m=m))
| subtraction_proof (s(x)) 0 p = abort p
| subtraction_proof (s(x)) (s(y)) p =

8



let (k, pf) = subtraction_proof x y p in
_todo_sum

Finally, we said that we can use the same k as our witness for this case, giving

fun subtraction_proof 0 m p = (m, Refl : (0+m=m))
| subtraction_proof (s(x)) 0 p = abort p
| subtraction_proof (s(x)) (s(y)) p =

let (k, pf) = subtraction_proof x y p in
(k, _todo_proof)

What can we use for _todo_proof? It should have type s(x) + k = s(y),
which, by definition of (+), is the same type as x + k = y, so we can use the
same pf returned to us by the inductive hypothesis –

fun subtraction_proof 0 m p = (m, Refl : (0+m=m))
| subtraction_proof (s(x)) 0 p = abort p
| subtraction_proof (s(x)) (s(y)) p =

let (k, pf) = subtraction_proof x y p in
(k, pf)

Dependent Types as Contracts
Coming soon! The above should be enough to complete HW13.

References
Dependent Type Theory — Theorem Proving in Lean 3.4.0 documen-
tation. (2017). Retrieved December 2, 2019, from Github.io website:
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html

Lafont, Y. (2011). Introduction to dependent type theory. Retrieved
from l’INSTITUT DE MATHÉMATIQUES DE MARSEILLE website:
http://iml.univ-mrs.fr/~lafont/HETT/coquand1.pdf

The Idris Tutorial — Idris 1.3.1 documentation. (2017). Retrieved December 2,
2019, from Idris-lang.org website: http://docs.idris-lang.org/en/latest/tutorial/

The Univalent Foundations Program, & Institute For Advanced Study (Princeton,
N.J. (n.d.). Homotopy type theory : univalent foundations of mathematics.

9


	The World of Types and Values
	What's in a proof?
	Higher-order proof terms
	Refinement types
	Reflection
	A note on decidability
	Universality

	Examples
	Theorem proving
	Dependent Types as Contracts

	References

