Algebraic Data Types

Hype for Types

September 9, 2020

Outline

- Look at types we already know from a different angle
- Formalize some important new type concepts
- break the universe

Introduction to Counting

bool and order

Notation

Write $|\tau|$ to denote the number of elements in type τ.

$$
\begin{aligned}
& \text { datatype bool }=\text { false | true } \\
& \text { datatype order }=\text { LESS | EQUAL | GREATER }
\end{aligned}
$$

What size are they?

$$
\begin{aligned}
\mid \text { bool } \mid & =2 \\
\mid \text { order } \mid & =3
\end{aligned}
$$

Often, we refer to bool as 2 and order as 3 :

$$
\begin{aligned}
& \text { true : } 2 \\
& \text { LESS : } 3
\end{aligned}
$$

Products

Products

Question

What is $\left|\tau_{1} \times \tau_{2}\right|$?
$\left|\tau_{1}\right| \times\left|\tau_{2}\right|$ - hence, the notation.
For example,

$$
\begin{aligned}
\mid \text { bool } \times \text { order } \mid & =\mid \text { bool }|\times| \text { order } \mid \\
& =2 \times 3 \\
& =6
\end{aligned}
$$

What do you know!

Theorem: Commutativity of Products
For all τ_{1}, τ_{2} :

$$
\tau_{1} \times \tau_{2} \simeq \tau_{2} \times \tau_{1}
$$

Theorem: Associativity of Products
For all $\tau_{1}, \tau_{2}, \tau_{3}$:

$$
\tau_{1} \times\left(\tau_{2} \times \tau_{3}\right) \simeq\left(\tau_{1} \times \tau_{2}\right) \times \tau_{3}
$$

Question

How do we know?

Proving Type Isomorphisms

To prove that $\tau \simeq \tau^{\prime}$, we need a bijection between τ and τ^{\prime}.

We write two (total) functions, $f: \tau \rightarrow \tau^{\prime}$ and $f^{\prime}: \tau^{\prime} \rightarrow \tau$, such that f and f^{\prime} are inverses.

$$
\begin{aligned}
& f^{\prime} \quad(f x) \cong x \\
& f(f, x) \cong x
\end{aligned}
$$

Associativity of Products: Proved!

Let's prove associativity of products:

$$
\tau_{1} \times\left(\tau_{2} \times \tau_{3}\right) \simeq\left(\tau_{1} \times \tau_{2}\right) \times \tau_{3}
$$

Need to write:

$$
\begin{array}{r}
f: \tau_{1} \times\left(\tau_{2} \times \tau_{3}\right) \rightarrow\left(\tau_{1} \times \tau_{2}\right) \times \tau_{3} \\
f^{\prime}:\left(\tau_{1} \times \tau_{2}\right) \times \tau_{3} \rightarrow \tau_{1} \times\left(\tau_{2} \times \tau_{3}\right)
\end{array}
$$

Nice!

$$
\begin{aligned}
& f=f n(a,(b, c)) \\
& f^{\prime}=\mathrm{fn}((a, b), c) \Rightarrow(a, b), c) \\
&
\end{aligned}
$$

Multiplicative Identity?

Follow-Up

Is there an identity element, "1"?

$$
\begin{aligned}
& \tau \times 1=\tau \\
& 1 \times \tau=\tau
\end{aligned}
$$

Yes - unit!

Theorem
For all types τ :

$$
\begin{aligned}
\tau \times \text { unit } & \simeq \tau \\
\text { unit } \times \tau & \simeq \tau
\end{aligned}
$$

Sums

Increment

Question
Is there such thing as $\tau+1$?

Answer
Yes! τ option.

SOME x
NONE
(τ choices)
(1 choice)

Sums

datatype ('a,'b) either $=$ Left of 'a \mid Right of 'b ${ }^{1}$

$$
\begin{aligned}
& \frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \text { Left } e: \tau_{1}+\tau_{2}}(\text { LEFT }) \quad \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \text { Right } e: \tau_{1}+\tau_{2}}(\text { RIGHT }) \\
& \frac{\Gamma \vdash e: \tau_{1}+\tau_{2}}{\Gamma \vdash \text { case } e \text { of } x_{1} \Rightarrow e_{1} \mid x_{2} \Rightarrow e_{2}: \tau}(\mathrm{CASE})
\end{aligned}
$$

And of course...
For all τ_{1}, τ_{2} :

$$
\left|\tau_{1}+\tau_{2}\right|=\left|\tau_{1}\right|+\left|\tau_{2}\right|
$$

${ }^{1}$ In the Standard ML Basis, (almost) the Either structure!

Options as Sums

datatype ('a,'b) either = Left of 'a | Right of 'b

Notice:
type 'a option = ('a,unit) either

We can represent τ option as $\tau+$ unit.

Example: Distributivity

Claim
For all types A, B, C :

$$
(A \times B)+(A \times C) \simeq A \times(B+C)
$$

$f:\left(\prime a * ' b,{ }^{\prime} a * ' c\right)$ either -> 'a * ('b,'c) either $f^{\prime}: \prime a *(' b, ' c)$ either -> ('a * 'b, 'a * 'c) either

$f^{\prime}=f n(a, L e f t ~ b)=>\operatorname{Left}(a, b) \mid(a, R i g h t c)=>\operatorname{Right}(a, c)$

Practical Application

Code refactoring principle! If both cases store the same data, factor it out.

Zero to Hero

If we can add, what's 0 ?
We call it void, the empty type. ${ }^{2}$

$$
\frac{\Gamma \vdash e: \text { void }}{\Gamma \vdash \operatorname{absurd}(e): \tau}(\mathrm{ABSURD})
$$

Implementing via SML Hacking

```
datatype void = Void of void
fun absurd (Void v) = absurd v
```

Notice: absurd is total!
${ }^{2}$ Unlike C's void type, which is actually unit.

void*

Claim

For all types τ :

$$
\tau+\operatorname{void} \simeq \tau
$$

$$
\begin{gathered}
f:(\text { 'tau, void) either }->\text { 'tau } \\
f^{\prime}: \text { 'tau }->\text { ('tau,void) either }
\end{gathered}
$$

$$
\begin{aligned}
f & =\mathrm{fn} \text { Left } \mathrm{x}=>\mathrm{x} \mid \text { Right } \mathrm{v} \Rightarrow>\text { absurd } \mathrm{v} \\
f^{\prime} & =\mathrm{fn} \mathrm{x}=>\text { Left } \mathrm{x} \\
& =\text { Left }
\end{aligned}
$$

Functions

How Many Functions?

How many (total) values are there of type $A \rightarrow B$, in terms of $|A|$ and $|B|$?

- How many functions are there of type $2 \rightarrow A$? $|A| \times|A|$
- How many functions are there of type $A \rightarrow 2$? $2^{|A|}$

Theorem

There are $|B|^{|A|}$ total functions from type A to type B.

Example: Power of a Power

In math, it's true that:

$$
\left(C^{B}\right)^{A}=C^{A \times B}
$$

In terms of types, that would mean:

$$
A \rightarrow(B \rightarrow C) \simeq A \times B \rightarrow C
$$

Yes!

$$
\begin{aligned}
& \mathrm{f}=\text { Fn.uncurry : ('a -> 'b -> 'c) -> ('a * 'b -> 'c) } \\
& \mathrm{f},=\text { Fn.curry }:\left(\mathrm{a}^{\prime} \mathrm{a} \text { ' } \mathrm{b}->\right.\text { 'c) -> ('a -> 'b -> 'c) }
\end{aligned}
$$

Recursive Types

datatype 'a list $=$ Nil | Cons of 'a * 'a list datatype 'a list = Left of unit | Right of 'a * 'a list type 'a list = (unit, 'a * 'a list) either

$$
L(\alpha) \simeq \text { unit }+\alpha \times L(\alpha)
$$

$$
\begin{aligned}
L(\alpha) & =1+\alpha \times L(\alpha) \\
& =1+\alpha \times(1+\alpha \times L(\alpha)) \\
& =1+\alpha+\alpha \times L(\alpha) \\
& =1+\alpha+\alpha \times(1+\alpha \times L(\alpha)) \\
& =1+\alpha+\alpha^{2}+\alpha^{3}+\ldots
\end{aligned}
$$

Binary Trees

```
datatype 'a tree
    = Empty
    | Node of 'a tree * 'a * 'a tree
```

$$
\begin{aligned}
T(\alpha) & \simeq \text { unit }+T(\alpha) \times \alpha \times T(\alpha) \\
& \simeq \text { unit }+\alpha \times T(\alpha)^{2}
\end{aligned}
$$

Binary Shrubs

datatype 'a shrub
= Leaf of 'a
| Node of 'a shrub * 'a shrub

$$
\begin{aligned}
S(\alpha) & \simeq \alpha+S(\alpha) \times S(\alpha) \\
& \simeq \alpha+S(\alpha)^{2}
\end{aligned}
$$

Natural Numbers

How many natural numbers are there?
datatype nat = Zero | Succ of nat

$$
\text { nat }=\text { unit }+ \text { nat }
$$

$$
\text { nat }=1+1+1+\cdots=\infty
$$

Therefore, we would expect:

$$
\begin{aligned}
\infty & =1+\infty \\
\text { nat } & \simeq \text { nat option }
\end{aligned}
$$

f = fn Zero => NONE | Succ n => SOME n
f' = fn NONE => Zero | SOME n => Succ n

haha type derivates go brrr

Taking Things Too Far

Question

What is $\frac{d}{d \alpha} \tau(\alpha)$?

Smart Idea

Dismiss the idea outright - this is madness!

Our Plan

>:)
$>:)$

$$
\begin{gathered}
\frac{d}{d \alpha} \alpha^{3}=3 \alpha^{2} \\
\alpha \times \alpha \times \alpha \quad \mapsto \quad 3 \times(\alpha \times \alpha)
\end{gathered}
$$

Conclusion
Differentiating a power "eats" a tuple slot, and tells you which element was removed.

Differentiating a List

Recall from calculus (?) that:

$$
a+a r+a r^{2}+a r^{3}+\cdots=\frac{a}{1-r}
$$

We have: ${ }^{3}$

$$
\begin{aligned}
L(\alpha)=1+\alpha & +\alpha^{2}+\ldots \stackrel{?}{=} \frac{1}{1-\alpha} \\
\frac{d}{d \alpha} L(\alpha) & =\frac{d}{d \alpha} \frac{1}{1-\alpha} \\
& =\frac{1}{(1-\alpha)^{2}} \\
& =\left(\frac{1}{1-\alpha}\right)^{2} \\
& =L(\alpha)^{2}
\end{aligned}
$$

Tree for Two, and Two for Tree

We said:

$$
T(\alpha)=1+\alpha T(\alpha)^{2}
$$

Here we go again...

$$
\begin{aligned}
\frac{d}{d \alpha} T(\alpha) & =\frac{d}{d \alpha} 1+\frac{d}{d \alpha} \alpha T(\alpha)^{2} \\
& =\alpha \times \frac{d}{d \alpha} T(\alpha)^{2}+\frac{d}{d \alpha} \alpha \times T(\alpha)^{2} \\
& =2 \alpha T(\alpha) \times \frac{d}{d \alpha} T(\alpha)+T(\alpha)^{2} \\
\frac{d}{d \alpha} T(\alpha) & =T(\alpha)^{2}\left(\frac{1}{1-2 \alpha T(\alpha)}\right) \\
& =T(\alpha)^{2} L(2 \alpha T(\alpha))
\end{aligned}
$$

Holey Cow!

$$
\begin{aligned}
\frac{d}{d \alpha} \alpha^{3} & =3 \alpha^{2} \\
\frac{d}{d \alpha} L(\alpha) & =L(\alpha)^{2} \\
\frac{d}{d \alpha} T(\alpha) & =T(\alpha)^{2} L(2 \alpha T(\alpha))
\end{aligned}
$$

"punctured" tuple
list zipper tree zipper

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts. ${ }^{\text {a }}$

[^0]
Conclusion

Conclusion

- Figured out the sizes of various types
- Generalized our type theory to include sum types (and void)
- Considered recursive types ${ }^{4}$
- Invented a type-level hole punch
${ }^{4}$ More on that later...

[^0]: ${ }^{a}$ http://strictlypositive.org/diff.pdf

