Algebraic Data Types

Hype for Types

September 9, 2020

Outline

- Look at types we already know from a different angle
- Formalize some important new type concepts
- break the universe

Introduction to Counting

bool and order

Notation

Write $|\tau|$ to denote the number of elements in type τ .

```
datatype bool = false | true
datatype order = LESS | EQUAL | GREATER
What size are they?
```

```
|\mathbf{bool}| = 2
|\mathbf{order}| = 3
```

Often, we refer to **bool** as 2 and **order** as 3:

```
true:2
```

Products

Products

Question

What is $|\tau_1 \times \tau_2|$?

 $|\tau_1| \times |\tau_2|$ - hence, the notation.

For example,

$$|\mathbf{bool} \times \mathbf{order}| = |\mathbf{bool}| \times |\mathbf{order}|$$

= 2 × 3
= 6

What do you know!

Theorem: Commutativity of Products

For all τ_1, τ_2 :

 $\tau_1 \times \tau_2 \simeq \tau_2 \times \tau_1$

Theorem: Associativity of Products For all τ_1, τ_2, τ_3 : $\tau_1 \times (\tau_2 \times \tau_3) \simeq (\tau_1 \times \tau_2) \times \tau_3$

Question

How do we know?

Proving Type Isomorphisms

To prove that $\tau \simeq \tau'$, we need a *bijection* between τ and τ' .

We write two (total) functions, $f : \tau \to \tau'$ and $f' : \tau' \to \tau$, such that f and f' are *inverses*.

f' (f x) \cong x f (f' x) \cong x

Associativity of Products: Proved!

Let's prove associativity of products:

$$au_1 imes (au_2 imes au_3) \simeq (au_1 imes au_2) imes au_3$$

Need to write:

$$f: \tau_1 \times (\tau_2 \times \tau_3) \to (\tau_1 \times \tau_2) \times \tau_3$$

$$f': (\tau_1 \times \tau_2) \times \tau_3 \to \tau_1 \times (\tau_2 \times \tau_3)$$

Nice!

$$f = fn (a, (b, c)) \Rightarrow ((a, b), c)$$

 $f' = fn ((a, b), c) \Rightarrow (a, (b, c))$

Multiplicative Identity?

Follow-Up

Is there an identity element, "1"?

 $\begin{aligned} \tau \times \mathbf{1} &= \tau \\ \mathbf{1} \times \tau &= \tau \end{aligned}$

Yes - unit!

Theorem For all types τ : $\tau \times unit \simeq \tau$ $unit \times \tau \simeq \tau$

			_	
	100	tor		noc
- 1 1 \	vue.	101	- I V	Des

Sums

Increment

Question

Is there such thing as $\tau + 1$?

Answer

Yes! τ option.

SOME x	(au choices)
NONE	(1 choice)

Sums

datatype ('a,'b) either = Left of 'a | Right of 'b¹

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \text{Left } e : \tau_1 + \tau_2} \text{ (LEFT)} \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \text{Right } e : \tau_1 + \tau_2} \text{ (RIGHT)}$$

$$\frac{\Gamma \vdash e : \tau_1 + \tau_2 \qquad \Gamma, x_1 : \tau_1 \vdash e_1 : \tau \qquad \Gamma, x_2 : \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \mathbf{case} \ e \ \mathbf{of} \ x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : \tau}$$
(CASE)

And of course...

For all τ_1, τ_2 :

$$|\tau_1 + \tau_2| = |\tau_1| + |\tau_2|$$

¹In the Standard ML Basis, (almost) the Either structure!

Hype for Types

```
datatype ('a, 'b) either = Left of 'a | Right of 'b
```

Notice:

type 'a option = ('a,unit) either

We can represent τ option as τ + unit.

Example: Distributivity

Claim

For all types A, B, C:

$$(A \times B) + (A \times C) \simeq A \times (B + C)$$

 $f = \text{fn Left (a,b)} \Rightarrow (a, \text{Left b)} | \text{Right (a,c)} \Rightarrow (a, \text{Right c})$ $f' = \text{fn (a, \text{Left b)}} \Rightarrow \text{Left (a,b)} | (a, \text{Right c}) \Rightarrow \text{Right (a,c)}$

Practical Application

Code refactoring principle! If both cases store the same data, factor it out.

Hype for Types

Algebraic Data Types

Zero to Hero

If we can add, what's 0?

We call it **void**, the empty type.²

$$\frac{\Gamma \vdash e : \mathsf{void}}{\Gamma \vdash \mathsf{absurd}(e) : \tau} (\text{Absurd})$$

Implementing via SML Hacking

datatype void = Void of void fun absurd (Void v) = absurd v

Notice: absurd is total!

²Unlike C's void type, which is actually **unit**.

Hype for Types

void*

Claim

For all types τ :

$$\tau + \operatorname{void} \simeq \tau$$

$$f = \text{fn Left } x \Rightarrow x | \text{Right } v \Rightarrow \text{absurd } v$$

 $f' = \text{fn } x \Rightarrow \text{Left } x$
 $= \text{Left}$

Functions

How Many Functions?

How many (total) values are there of type $A \rightarrow B$, in terms of |A| and |B|?

- How many functions are there of type 2 \rightarrow A? $|A| \times |A|$
- How many functions are there of type $A \rightarrow 2$? $2^{|A|}$

Theorem

There are $|B|^{|A|}$ total functions from type A to type B.

Example: Power of a Power

In math, it's true that:

$$(C^B)^A = C^{A \times B}$$

In terms of types, that would mean:

$$A \rightarrow (B \rightarrow C) \simeq A \times B \rightarrow C$$

Yes!

Recursive Types

Lists

datatype 'a list = Nil | Cons of 'a * 'a list

datatype 'a list = Left of unit | Right of 'a * 'a list

type 'a list = (unit, 'a * 'a list) either

 $L(\alpha) \simeq \text{unit} + \alpha \times L(\alpha)$

$$L(\alpha) = 1 + \alpha \times L(\alpha)$$

= 1 + \alpha \times (1 + \alpha \times L(\alpha))
= 1 + \alpha + \alpha \times L(\alpha)
= 1 + \alpha + \alpha^2 + \alpha^3 + \dots

Binary Trees

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

$$egin{aligned} \mathcal{T}(lpha) &\simeq \mathsf{unit} + \mathcal{T}(lpha) imes lpha imes \mathcal{T}(lpha) \ &\simeq \mathsf{unit} + lpha imes \mathcal{T}(lpha)^2 \end{aligned}$$

Binary Shrubs

```
datatype 'a shrub
= Leaf of 'a
| Node of 'a shrub * 'a shrub
```

$$egin{aligned} \mathcal{S}(lpha) &\simeq lpha + \mathcal{S}(lpha) imes \mathcal{S}(lpha) \ &\simeq lpha + \mathcal{S}(lpha)^2 \end{aligned}$$

Natural Numbers

How many natural numbers are there?

datatype nat = Zero | Succ of nat

nat = unit + nat

 $\mathsf{nat} = 1 + 1 + 1 + \dots = \infty$

Therefore, we would expect:

 $\infty = 1 + \infty$

nat \simeq nat option

f = fn Zero => NONE | Succ n => SOME n
f' = fn NONE => Zero | SOME n => Succ n

haha type derivates go brrr

Taking Things Too Far

Question

What is $\frac{d}{d\alpha}\tau(\alpha)$?

Smart Idea

Dismiss the idea outright - this is madness!

Our Plan

>:)

$$\frac{d}{d\alpha}\alpha^3 = 3\alpha^2$$

$$\alpha \times \alpha \times \alpha \qquad \mapsto \qquad \mathbf{3} \times (\alpha \times \alpha)$$

Conclusion

Differentiating a power "eats" a tuple slot, and tells you which element was removed.

Differentiating a List

Recall from calculus (?) that:

$$a + ar + ar^2 + ar^3 + \dots = rac{a}{1-r}$$

We have:³

$$L(\alpha) = 1 + \alpha + \alpha^2 + \dots \stackrel{?}{=} \frac{1}{1 - \alpha}$$

$$\frac{d}{d\alpha}L(\alpha) = \frac{d}{d\alpha}\frac{1}{1-\alpha}$$
$$= \frac{1}{(1-\alpha)^2}$$
$$= \left(\frac{1}{1-\alpha}\right)^2$$
$$= L(\alpha)^2$$

³What the hype is a negative type?

Hype for Types

Tree for Two, and Two for Tree

We said:

$$T(\alpha) = 1 + \alpha T(\alpha)^2$$

Here we go again...

$$\frac{d}{d\alpha}T(\alpha) = \frac{d}{d\alpha}1 + \frac{d}{d\alpha}\alpha T(\alpha)^2$$
$$= \alpha \times \frac{d}{d\alpha}T(\alpha)^2 + \frac{d}{d\alpha}\alpha \times T(\alpha)^2$$
$$= 2\alpha T(\alpha) \times \frac{d}{d\alpha}T(\alpha) + T(\alpha)^2$$
$$\frac{d}{d\alpha}T(\alpha) = T(\alpha)^2 \left(\frac{1}{1 - 2\alpha T(\alpha)}\right)$$
$$= T(\alpha)^2 L(2\alpha T(\alpha))$$

Holey Cow!

$$\frac{d}{d\alpha}\alpha^{3} = 3\alpha^{2}$$
 "punctured" tuple
$$\frac{d}{d\alpha}L(\alpha) = L(\alpha)^{2}$$
 list zipper
$$\frac{d}{d\alpha}T(\alpha) = T(\alpha)^{2}L(2\alpha T(\alpha))$$
 tree zipper

Theorem

The Derivative of a Regular Type is its Type of One-Hole Contexts.^a

^ahttp://strictlypositive.org/diff.pdf

Conclusion

Conclusion

- Figured out the sizes of various types
- Generalized our type theory to include *sum types* (and **void**)
- Considered recursive types⁴
- Invented a type-level hole punch

⁴More on that later...