Category Theory (for Programmers)

Hype for Types

October 10, 2020

Hype for Types Category Theory (for Programmers)

What is a category?

Hype for Types Category Theory (for Programmers)

Monoids

Definition
A monoid M is the data:
@ type t
o valuez : t
ovaluef : t >t >t
@ upholds f x z=f z x =x
o upholds £ x (f y z) =f (f xy) z

Ths abstraction is handy! e.g.:

Seq.reduce M.f M.z : t seq -> t

Hype for Types Category Theory (for Programmers) October 10, 2020 3/23

Examples of Monoids

There are many monoids. For example:

Natural numbers with zero, addition

Natural numbers with one, multiplication

°
@ Strings with empty string, string concatenation
@ Lists with empty list, appending

°

Sets with empty set, union

Hype for Types Category Theory (for Programmers) October 10, 2020 4/23

Categories

Definition
A category C is the data:
@ a collection of objects, Ob(C)
@ a collection of arrows, Arr(C)
e for every arrow, a source x € Ob(C)
e for every arrow, a target y € Ob(C)
e for every object x € Ob(C), an arrow idy : x — x
@ for every arrow u:x — y and v:y — z, an arrow uov :x — z

o foreveryarrow f :w = x,g:x—y, h:y — z,
fo(goh)=(fog)oh

Hype for Types Category Theory (for Programmers) October 10, 2020 5/23

Examples of Categories

There are many categories. For example:
@ Objects are sets, arrows are functions
@ Objects are groups, arrows are group homomorphisms
@ Objects are “numbers”, arrows are for <
@ Objects are propositions, arrows are implications
@ Objects are SML types, arrows are (total) functions

We'll focus on the last one.

Hype for Types Category Theory (for Programmers) October 10, 2020 6/23

Mappables!

Well, “functors”, but that’s already a thing in SML...
Hype for Types Category Theory (for Programmers)

From Category to Category

What would a transformation from category to category look like?

We must:
@ turn objects into objects

@ turn arrows into arrows

How about:

type ’a map_obj
fun map_arr f

’a list
List.map f

Hype for Types Category Theory (for Programmers) October 10, 2020 8/23

Visualizing Lists

. List.map £
t list ———u
£

list
u

t >

Hype for Types Category Theory (for Programmers)

Mappables?

Definition?
A mappable M is the data:
@ type ’a t

@ valuemap : (’a -> ’b) -> ’at -> ’b t

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t
end

Hype for Types Category Theory (for Programmers) October 10, 2020 10/23

Which map?
What if we picked:
type ’a map_obj = Ya list

fun map_arrl f
fn _ => []
fun map_arr2 f

fn 1 => List.map f (List.rev 1)
fun map_arr3 f =

fn [] => []

| ::xs => List.map f xs

Problems:

map_arr Fn.id [1,2,3] =7= [1,2,3]

map_arr List.length o map_arr Int.toString
=7=

map_arr (List.length o Int.toString)
October 10, 2020 11/23

Mappables

Definition
A mappable M is the data:
o type’a t
@ valuemap : (’a -> ’b) ->’at > b t

@ upholds map id =5 ¢ — 75 ¢ id

@ upholds map f o map g =map (f o g)

In other words:

signature MAPPABLE =

sig
type ’a t
val map : (’a -> ’b) -> ’a t -> ’b t
(* invariants: ... *)

end

Hype for Types Category Theory (for Programmers) October 10, 2020 12/23

Optimization: Loop Fusion!

If we have:

int [n] arr;

for (int i = 0; i < n; i++)
arr [i] = f(i);

for (int i = 0; i < n; i++)
arr [i] = g(i);

then it must be equivalent to:2

for (int i = 0; i < n; i++)
arr [i] = g(£(i));

2Not just for lists - any data structure with a “sensible” notion of map works!

Hype for Types Category Theory (for Programmers) October 10, 2020 13/23

Some Example Mappables

Lists
Options
Trees
Streams

Functions int -> ’a

i.e., (almost) anything polymorphic.

Conclusion
It's a useful abstraction. J

Hype for Types Category Theory (for Programmers) October 10, 2020 14 /23

Monads

Hype for Types Category Theory (for Programmers)

Descent into partial madness

Partial functions return options:
@ sqrt : int -> int opt
@ div : (int * int) -> int opt
@ head : a list -> a opt
@ tail : a list -> a list opt

How would we write the partial version of tail_3

(* tail_3 : a list -> a list *)
fun tail_3 (_::_::_::L) =1L

Hype for Types Category Theory (for Programmers) October 10, 2020 16 /23

Composing partial functions

How would we write the partial version of tail_37

tail_3 : ’a list -> ’a list opt

Partial madness!

fun tail_3 LO =
case tail LO of
NONE => NONE
| SOME L1 =>
(case tail L1 of
NONE => NONE
| SOME L2 => tail L2)

What about tail_57

Hype for Types Category Theory (for Programmers) October 10, 2020 17 /23

Composing partial functions (again)

How would we write the partial version of tail_57

tail_5 : ’a list -> ’a list opt

If only...

val tail_5 = tail o tail o tail o tail o tail

Another kind of compose

o : (b ->¢) * (a ->b) -> a ->c
<=< : (b -> ¢ opt) * (a -> b opt) -> a -> c opt
Ta-dal

fun f <=< g =
(fn NONE => NONE | SOME x => f x) o g

Hype for Types Category Theory (for Programmers) October 10, 2020 18/23

More than a composition

Some useful versions of common tools
type ’a t = ’a option
Compose
val <=< : (’b -> ’¢c t) * (’a -> ’b t) -> (’a -> ’c
Apply
val >>= : ’a t * (’a -> ’b t) -> ’b t
Flatten

val join : ’a t t -> ’a t

Hype for Types Category Theory (for Programmers) October 10, 2020 19/23

bind : ’a t * (’a ->’bt) > ’b t

type ’a t = ’a option
fun x >>= f = case x of SOME x => f x
| NONE => NONE
type ’a t = ’a list
fun xs >>= f = List.concat (List.map f xs)
type ’a t = ’a * string

fun (x,a) >>= f = let (y,b) = f x
in (y,a"b) end

type ’a t = unit -> ’a
fun x >>= f fn O =>f (x0O) O

datatype ’a t = Ret of ’a | Err of exn
fun x >>= f case x of Ret a => f x
| Err x => Err x

Hype for Types Category Theory (for Programmers) October 10, 2020 20/23

Programming with Monads

readInput : stream ->
parseUsername : string ->
getUserFromId : string ->

getAvatar : user ->

SOME TextIO.stdIn
>>= readInput
>>= parseUsername
>>= getUserFromlId
>>= getAvatar

string option
string option
user option
image option

Hype for Types Category Theory (for Programmers) October 10, 2020

21/23

Parallel: Imperative Programming

inString <- SOME TextIO.stdIn
userId <- parseUsername inString
user <- getUserFromId userId
avatar <- getAvatar user

Hype for Types Category Theory (for Programmers) October 10, 2020 22/23

Useful pattern!

Key ldea J

Monads are a useful programming tool!

signature MONAD =

sig

type ’a t

val return : ’a -> ’a t

val >>= : ’a t * (’a -> ’b t) -> ’b t
end

Hype for Types Category Theory (for Programmers) October 10, 2020 23/23

	What is a category?
	MappablesWell, ``functors'', but that's already a thing in SML...
	Monads

