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What is a category?
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Monoids

Definition

A monoid M is the data:

type t

value z : t

value f : t -> t -> t

upholds f x z = f z x = x

upholds f x (f y z) = f (f x y) z

Ths abstraction is handy! e.g.:

Seq.reduce M.f M.z : t seq -> t
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Examples of Monoids

There are many monoids. For example:

Natural numbers with zero, addition

Natural numbers with one, multiplication

Strings with empty string, string concatenation

Lists with empty list, appending

Sets with empty set, union
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Categories

Definition

A category C is the data:

a collection of objects, Ob(C )

a collection of arrows, Arr(C )

for every arrow, a source x ∈ Ob(C )

for every arrow, a target y ∈ Ob(C )

for every object x ∈ Ob(C ), an arrow idx : x → x

for every arrow u : x → y and v : y → z , an arrow u ◦ v : x → z

for every arrow f : w → x , g : x → y , h : y → z ,
f ◦ (g ◦ h) = (f ◦ g) ◦ h
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Examples of Categories

There are many categories. For example:

Objects are sets, arrows are functions

Objects are groups, arrows are group homomorphisms

Objects are “numbers”, arrows are for ≤
Objects are propositions, arrows are implications

Objects are SML types, arrows are (total) functions

We’ll focus on the last one.

Hype for Types Category Theory (for Programmers) October 10, 2020 6 / 23



Mappables1

1Well, “functors”, but that’s already a thing in SML...
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From Category to Category

What would a transformation from category to category look like?

We must:

turn objects into objects

turn arrows into arrows

How about:

type ’a map_obj = ’a list

fun map_arr f = List.map f

Hype for Types Category Theory (for Programmers) October 10, 2020 8 / 23



Visualizing Lists

t list u list

t u

List.map f

f
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Mappables?

Definition?

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

end
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Which map?
What if we picked:

type ’a map_obj = ’a list

fun map_arr1 f =

fn _ => []

fun map_arr2 f =

fn l => List.map f (List.rev l)

fun map_arr3 f =

fn [] => []

| _::xs => List.map f xs

Problems:

map_arr Fn.id [1,2,3] =?= [1,2,3]

map_arr List.length o map_arr Int.toString

=?=

map_arr (List.length o Int.toString)
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Mappables

Definition

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

upholds map id =’a t → ’a t id

upholds map f o map g = map (f o g)

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

(* invariants: ... *)

end
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Optimization: Loop Fusion!

If we have:

int[n] arr;

for (int i = 0; i < n; i++)

arr[i] = f(i);

for (int i = 0; i < n; i++)

arr[i] = g(i);

then it must be equivalent to:2

for (int i = 0; i < n; i++)

arr[i] = g(f(i));

2Not just for lists - any data structure with a “sensible” notion of map works!
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Some Example Mappables

Lists

Options

Trees

Streams

Functions int -> ’a

...

i.e., (almost) anything polymorphic.

Conclusion

It’s a useful abstraction.
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Monads
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Descent into partial madness

Partial functions return options:

sqrt : int -> int opt

div : (int * int) -> int opt

head : a list -> a opt

tail : a list -> a list opt

How would we write the partial version of tail_3

(* tail_3 : a list -> a list *)

fun tail_3 (_::_::_::L) = L
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Composing partial functions

How would we write the partial version of tail_3?

tail_3 : ’a list -> ’a list opt

Partial madness!

fun tail_3 L0 =

case tail L0 of

NONE => NONE

| SOME L1 =>

( case tail L1 of

NONE => NONE

| SOME L2 => tail L2)

What about tail_5?
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Composing partial functions (again)

How would we write the partial version of tail_5?

tail_5 : ’a list -> ’a list opt

If only...

val tail_5 = tail o tail o tail o tail o tail

Another kind of compose

o : (b -> c) * (a -> b) -> a -> c

<=< : (b -> c opt) * (a -> b opt) -> a -> c opt

Ta-da!

fun f <=< g =

(fn NONE => NONE | SOME x => f x) o g
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More than a composition

Some useful versions of common tools

type ’a t = ’a option

Compose

val <=< : (’b -> ’c t) * (’a -> ’b t) -> (’a -> ’c t)

Apply

val >>= : ’a t * (’a -> ’b t) -> ’b t

Flatten

val join : ’a t t -> ’a t
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bind : ’a t * (’a -> ’b t) -> ’b t

type ’a t = ’a option

fun x >>= f = case x of SOME x => f x

| NONE => NONE

type ’a t = ’a list

fun xs >>= f = List.concat (List.map f xs)

type ’a t = ’a * string

fun (x,a) >>= f = let (y,b) = f x

in (y,a^b) end

type ’a t = unit -> ’a

fun x >>= f = fn () => f (x()) ()

datatype ’a t = Ret of ’a | Err of exn

fun x >>= f = case x of Ret a => f x

| Err x => Err x
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Programming with Monads

readInput : stream -> string option

parseUsername : string -> string option

getUserFromId : string -> user option

getAvatar : user -> image option

SOME TextIO.stdIn

>>= readInput

>>= parseUsername

>>= getUserFromId

>>= getAvatar
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Parallel: Imperative Programming

inString <- SOME TextIO.stdIn

userId <- parseUsername inString

user <- getUserFromId userId

avatar <- getAvatar user
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Useful pattern!

Key Idea

Monads are a useful programming tool!

signature MONAD =

sig

type ’a t

val return : ’a -> ’a t

val >>= : ’a t * (’a -> ’b t) -> ’b t

end
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