
Category Theory (for Programmers)

Hype for Types

October 10, 2020

Hype for Types Category Theory (for Programmers) October 10, 2020 1 / 23

What is a category?

Hype for Types Category Theory (for Programmers) October 10, 2020 2 / 23

Monoids

Definition

A monoid M is the data:

type t

value z : t

value f : t -> t -> t

upholds f x z = f z x = x

upholds f x (f y z) = f (f x y) z

Ths abstraction is handy! e.g.:

Seq.reduce M.f M.z : t seq -> t

Hype for Types Category Theory (for Programmers) October 10, 2020 3 / 23

Examples of Monoids

There are many monoids. For example:

Natural numbers with zero, addition

Natural numbers with one, multiplication

Strings with empty string, string concatenation

Lists with empty list, appending

Sets with empty set, union

Hype for Types Category Theory (for Programmers) October 10, 2020 4 / 23

Categories

Definition

A category C is the data:

a collection of objects, Ob(C)

a collection of arrows, Arr(C)

for every arrow, a source x ∈ Ob(C)

for every arrow, a target y ∈ Ob(C)

for every object x ∈ Ob(C), an arrow idx : x → x

for every arrow u : x → y and v : y → z , an arrow u ◦ v : x → z

for every arrow f : w → x , g : x → y , h : y → z ,
f ◦ (g ◦ h) = (f ◦ g) ◦ h

Hype for Types Category Theory (for Programmers) October 10, 2020 5 / 23

Examples of Categories

There are many categories. For example:

Objects are sets, arrows are functions

Objects are groups, arrows are group homomorphisms

Objects are “numbers”, arrows are for ≤
Objects are propositions, arrows are implications

Objects are SML types, arrows are (total) functions

We’ll focus on the last one.

Hype for Types Category Theory (for Programmers) October 10, 2020 6 / 23

Mappables1

1Well, “functors”, but that’s already a thing in SML...
Hype for Types Category Theory (for Programmers) October 10, 2020 7 / 23

From Category to Category

What would a transformation from category to category look like?

We must:

turn objects into objects

turn arrows into arrows

How about:

type ’a map_obj = ’a list

fun map_arr f = List.map f

Hype for Types Category Theory (for Programmers) October 10, 2020 8 / 23

Visualizing Lists

t list u list

t u

List.map f

f

Hype for Types Category Theory (for Programmers) October 10, 2020 9 / 23

Mappables?

Definition?

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

end

Hype for Types Category Theory (for Programmers) October 10, 2020 10 / 23

Which map?
What if we picked:

type ’a map_obj = ’a list

fun map_arr1 f =

fn _ => []

fun map_arr2 f =

fn l => List.map f (List.rev l)

fun map_arr3 f =

fn [] => []

| _::xs => List.map f xs

Problems:

map_arr Fn.id [1,2,3] =?= [1,2,3]

map_arr List.length o map_arr Int.toString

=?=

map_arr (List.length o Int.toString)

Hype for Types Category Theory (for Programmers) October 10, 2020 11 / 23

Mappables

Definition

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

upholds map id =’a t → ’a t id

upholds map f o map g = map (f o g)

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

(* invariants: ... *)

end

Hype for Types Category Theory (for Programmers) October 10, 2020 12 / 23

Optimization: Loop Fusion!

If we have:

int[n] arr;

for (int i = 0; i < n; i++)

arr[i] = f(i);

for (int i = 0; i < n; i++)

arr[i] = g(i);

then it must be equivalent to:2

for (int i = 0; i < n; i++)

arr[i] = g(f(i));

2Not just for lists - any data structure with a “sensible” notion of map works!
Hype for Types Category Theory (for Programmers) October 10, 2020 13 / 23

Some Example Mappables

Lists

Options

Trees

Streams

Functions int -> ’a

...

i.e., (almost) anything polymorphic.

Conclusion

It’s a useful abstraction.

Hype for Types Category Theory (for Programmers) October 10, 2020 14 / 23

Monads

Hype for Types Category Theory (for Programmers) October 10, 2020 15 / 23

Descent into partial madness

Partial functions return options:

sqrt : int -> int opt

div : (int * int) -> int opt

head : a list -> a opt

tail : a list -> a list opt

How would we write the partial version of tail_3

(* tail_3 : a list -> a list *)

fun tail_3 (_::_::_::L) = L

Hype for Types Category Theory (for Programmers) October 10, 2020 16 / 23

Composing partial functions

How would we write the partial version of tail_3?

tail_3 : ’a list -> ’a list opt

Partial madness!

fun tail_3 L0 =

case tail L0 of

NONE => NONE

| SOME L1 =>

(case tail L1 of

NONE => NONE

| SOME L2 => tail L2)

What about tail_5?

Hype for Types Category Theory (for Programmers) October 10, 2020 17 / 23

Composing partial functions (again)

How would we write the partial version of tail_5?

tail_5 : ’a list -> ’a list opt

If only...

val tail_5 = tail o tail o tail o tail o tail

Another kind of compose

o : (b -> c) * (a -> b) -> a -> c

<=< : (b -> c opt) * (a -> b opt) -> a -> c opt

Ta-da!

fun f <=< g =

(fn NONE => NONE | SOME x => f x) o g

Hype for Types Category Theory (for Programmers) October 10, 2020 18 / 23

More than a composition

Some useful versions of common tools

type ’a t = ’a option

Compose

val <=< : (’b -> ’c t) * (’a -> ’b t) -> (’a -> ’c t)

Apply

val >>= : ’a t * (’a -> ’b t) -> ’b t

Flatten

val join : ’a t t -> ’a t

Hype for Types Category Theory (for Programmers) October 10, 2020 19 / 23

bind : ’a t * (’a -> ’b t) -> ’b t

type ’a t = ’a option

fun x >>= f = case x of SOME x => f x

| NONE => NONE

type ’a t = ’a list

fun xs >>= f = List.concat (List.map f xs)

type ’a t = ’a * string

fun (x,a) >>= f = let (y,b) = f x

in (y,a^b) end

type ’a t = unit -> ’a

fun x >>= f = fn () => f (x()) ()

datatype ’a t = Ret of ’a | Err of exn

fun x >>= f = case x of Ret a => f x

| Err x => Err x

Hype for Types Category Theory (for Programmers) October 10, 2020 20 / 23

Programming with Monads

readInput : stream -> string option

parseUsername : string -> string option

getUserFromId : string -> user option

getAvatar : user -> image option

SOME TextIO.stdIn

>>= readInput

>>= parseUsername

>>= getUserFromId

>>= getAvatar

Hype for Types Category Theory (for Programmers) October 10, 2020 21 / 23

Parallel: Imperative Programming

inString <- SOME TextIO.stdIn

userId <- parseUsername inString

user <- getUserFromId userId

avatar <- getAvatar user

Hype for Types Category Theory (for Programmers) October 10, 2020 22 / 23

Useful pattern!

Key Idea

Monads are a useful programming tool!

signature MONAD =

sig

type ’a t

val return : ’a -> ’a t

val >>= : ’a t * (’a -> ’b t) -> ’b t

end

Hype for Types Category Theory (for Programmers) October 10, 2020 23 / 23

	What is a category?
	MappablesWell, ``functors'', but that's already a thing in SML...
	Monads

