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What We’ll Talk About

How to make malloc and free safe

Resources and state at the type level

Owls
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Linear Logic
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Malloc is Scary...

Consider the following C code:

int main () {

char *str;

str = (char *) malloc (13);

strcpy(str , "hypefortypes");

free(str);

return (0);

}

In C, we have to make sure we allocate and deallocate every memory cell
exactly once.

Question

Is there a way to make our types guarantee correctness?
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The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.

Want to be able to get rid of assumptions

Truth should no longer be persistent, but rather ephemeral

This property comes from structural rules: weakening and contraction.
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Weakening

int main() {

int *x = (int *) malloc(sizeof(int));

*x = 3;

return *x;

}

Weakening: we can “drop” assumptions

Γ ` e : τ

Γ, x : τ ′ ` e : τ
(Weak)
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Contraction

void f(int *x) {

free(x);

}

int main() {

int *x = (int *) malloc(sizeof(int));

*x = 3;

f(x);

return *x;

}

Contraction: we can “duplicate” assumptions

Γ, x1 : τ, x2 : τ ` e : τ ′

Γ, x : τ ` [x , x/x1, x2]e : τ ′
(Cntr)

Hype for Types Linear Logic and Session Types November 10, 2020 7 / 21



Introduction to Linear Logic

In linear logic, we have neither weakening nor contraction.

Requirement that we use each piece of data exactly once - no
duplication, no dropping

Comes with an inherent idea of “resources” that are used up

Allows us to write safe, stateful (imperative!) programs

Practical Example

The programming language Rust uses affine logic, which has weakening
but not contraction (meaning we can use data at most once).
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The Linear Rules
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Identity

Constructive Logic

Γ,A ` A
(Hyp)

Linear Logic

A ` A
(Hyp)

Intuition

“Given A and nothing else, we can use up A”
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Implication

Constructive Logic

Γ,A ` B

Γ ` A⇒ B
(⇒I)

Γ ` A⇒ B Γ ` A

Γ ` B
(⇒E)

Linear Logic

∆,A ` B

∆ ` A ( B
((I)

∆ ` A ( B ∆′ ` A

∆,∆′ ` B
((E)

Note

In the elimination rule, we split the contexts to prove the necessary
premises.
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Disjunction

Constructive Logic

Γ ` A

Γ ` A ∨ B
(∨I1)

Γ ` B

Γ ` A ∨ B
(∨I2)

Γ ` A ∨ B Γ,A ` C Γ,B ` C

Γ ` C
(∨E)

Linear Logic

∆ ` A

∆ ` A⊕ B
(⊕I1)

∆ ` B

∆ ` A⊕ B
(⊕I2)

∆,A ` C ∆,B ` C

∆,A⊕ B ` C
(⊕E)
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Conjunction

Constructive Logic

Γ ` A Γ ` B

Γ ` A ∧ B
(∧I)

Γ ` A ∧ B

Γ ` A
(∧E1)

Γ ` A ∧ B

Γ ` B
(∧E2)

Linear Logic

∆ ` A ∆′ ` B

∆,∆′ ` A⊗ B
(⊗I)

∆ ` A⊗ B ∆′,A,B ` C

∆,∆′ ` C
(⊗E)

Problem

In the constructive elimination rules, what happens to B and A,
respectively? What do we do for linear?
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Choice

So far, we’ve seen:

Disjunction: “I could get either A or B, but I don’t know which”
(internal choice)

Conjunction: “I have both A and B simultaneously”

...But there’s another form of choice, when it comes to resources.

External choice: “I can have either A or B, but not both at the
same time”
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External Choice/Alternative Conjunction

∆ ` A ∆ ` B

∆ ` A&B
(&I)

∆ ` A&B

∆ ` A
(&E1)

∆ ` A&B

∆ ` B
(&E2)

Examples:

Given $7, I can buy either a sandwich from ABP or pancakes from the
Underground, but not both.

If I have 1 egg, I can make either scrambled eggs or a fried egg, but
not both.
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The Linear Rules

A ` A
(Hyp)

∆,A ` B

∆ ` A ( B
((I)

∆ ` A ( B ∆′ ` A

∆,∆′ ` B
((E)

∆ ` A ∆′ ` B

∆,∆′ ` A⊗ B
(⊗I)

∆ ` A⊗ B ∆′,A,B ` C

∆,∆′ ` C
(⊗E)

∆ ` A

∆ ` A⊕ B
(⊕I1)

∆ ` B

∆ ` A⊕ B
(⊕I2)

∆,A ` C ∆,B ` C

∆,A⊕ B ` C
(⊕E)

∆ ` A ∆ ` B

∆ ` A&B
(&I)

∆ ` A&B

∆ ` A
(&E1)

∆ ` A&B

∆ ` B
(&E2)
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Session Types
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Back to Curry-Howard

Constructive Logic Linear Logic
Functional programming Concurrent programming

Functions Processes
“SML” types Session types

Evaluation Owls

Note

In the context of imperative programming: a memory cell can be thought
of as a process that “remembers” some data.
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Processes

Processes (wizards) communicate across channels (owls) by sending
and receiving messages (letters)

decl P : (x1 : A1)(x2 : A2)...(xn : An) ` (x : A)

The Process Judgment

“Process P provides a channel x carrying type A, using channels x1, ..., xn
carrying A1, ...,An.”
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Live Coding
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Conclusion

Things We Talked About

Linearity as a way of representing state

Linear propositions in terms of resources

The Curry-Howard correspondence between linear logic and session
types

Writing programs with processes1

Things We Didn’t Cover

Concurrent programming (spawning processes in parallel)

Resource tracking (identify the cost of different programs)
I Amortized analysis
I Automatic bound derivation
I Granularity control?

1https://bitbucket.org/fpfenning/rast/src/master/
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