
Linear Logic and Session Types

Hype for Types

November 10, 2020

Hype for Types Linear Logic and Session Types November 10, 2020 1 / 21

What We’ll Talk About

How to make malloc and free safe

Resources and state at the type level

Owls

Hype for Types Linear Logic and Session Types November 10, 2020 2 / 21

Linear Logic

Hype for Types Linear Logic and Session Types November 10, 2020 3 / 21

Malloc is Scary...

Consider the following C code:

int main () {

char *str;

str = (char *) malloc (13);

strcpy(str , "hypefortypes");

free(str);

return (0);

}

In C, we have to make sure we allocate and deallocate every memory cell
exactly once.

Question

Is there a way to make our types guarantee correctness?

Hype for Types Linear Logic and Session Types November 10, 2020 4 / 21

The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.

Want to be able to get rid of assumptions

Truth should no longer be persistent, but rather ephemeral

This property comes from structural rules: weakening and contraction.

Hype for Types Linear Logic and Session Types November 10, 2020 5 / 21

Weakening

int main() {

int *x = (int *) malloc(sizeof(int));

*x = 3;

return *x;

}

Weakening: we can “drop” assumptions

Γ ` e : τ

Γ, x : τ ′ ` e : τ
(Weak)

Hype for Types Linear Logic and Session Types November 10, 2020 6 / 21

Contraction

void f(int *x) {

free(x);

}

int main() {

int *x = (int *) malloc(sizeof(int));

*x = 3;

f(x);

return *x;

}

Contraction: we can “duplicate” assumptions

Γ, x1 : τ, x2 : τ ` e : τ ′

Γ, x : τ ` [x , x/x1, x2]e : τ ′
(Cntr)

Hype for Types Linear Logic and Session Types November 10, 2020 7 / 21

Introduction to Linear Logic

In linear logic, we have neither weakening nor contraction.

Requirement that we use each piece of data exactly once - no
duplication, no dropping

Comes with an inherent idea of “resources” that are used up

Allows us to write safe, stateful (imperative!) programs

Practical Example

The programming language Rust uses affine logic, which has weakening
but not contraction (meaning we can use data at most once).

Hype for Types Linear Logic and Session Types November 10, 2020 8 / 21

The Linear Rules

Hype for Types Linear Logic and Session Types November 10, 2020 9 / 21

Identity

Constructive Logic

Γ,A ` A
(Hyp)

Linear Logic

A ` A
(Hyp)

Intuition

“Given A and nothing else, we can use up A”

Hype for Types Linear Logic and Session Types November 10, 2020 10 / 21

Implication

Constructive Logic

Γ,A ` B

Γ ` A⇒ B
(⇒I)

Γ ` A⇒ B Γ ` A

Γ ` B
(⇒E)

Linear Logic

∆,A ` B

∆ ` A (B
((I)

∆ ` A (B ∆′ ` A

∆,∆′ ` B
((E)

Note

In the elimination rule, we split the contexts to prove the necessary
premises.

Hype for Types Linear Logic and Session Types November 10, 2020 11 / 21

Disjunction

Constructive Logic

Γ ` A

Γ ` A ∨ B
(∨I1)

Γ ` B

Γ ` A ∨ B
(∨I2)

Γ ` A ∨ B Γ,A ` C Γ,B ` C

Γ ` C
(∨E)

Linear Logic

∆ ` A

∆ ` A⊕ B
(⊕I1)

∆ ` B

∆ ` A⊕ B
(⊕I2)

∆,A ` C ∆,B ` C

∆,A⊕ B ` C
(⊕E)

Hype for Types Linear Logic and Session Types November 10, 2020 12 / 21

Conjunction

Constructive Logic

Γ ` A Γ ` B

Γ ` A ∧ B
(∧I)

Γ ` A ∧ B

Γ ` A
(∧E1)

Γ ` A ∧ B

Γ ` B
(∧E2)

Linear Logic

∆ ` A ∆′ ` B

∆,∆′ ` A⊗ B
(⊗I)

∆ ` A⊗ B ∆′,A,B ` C

∆,∆′ ` C
(⊗E)

Problem

In the constructive elimination rules, what happens to B and A,
respectively? What do we do for linear?

Hype for Types Linear Logic and Session Types November 10, 2020 13 / 21

Choice

So far, we’ve seen:

Disjunction: “I could get either A or B, but I don’t know which”
(internal choice)

Conjunction: “I have both A and B simultaneously”

...But there’s another form of choice, when it comes to resources.

External choice: “I can have either A or B, but not both at the
same time”

Hype for Types Linear Logic and Session Types November 10, 2020 14 / 21

External Choice/Alternative Conjunction

∆ ` A ∆ ` B

∆ ` A&B
(&I)

∆ ` A&B

∆ ` A
(&E1)

∆ ` A&B

∆ ` B
(&E2)

Examples:

Given $7, I can buy either a sandwich from ABP or pancakes from the
Underground, but not both.

If I have 1 egg, I can make either scrambled eggs or a fried egg, but
not both.

Hype for Types Linear Logic and Session Types November 10, 2020 15 / 21

The Linear Rules

A ` A
(Hyp)

∆,A ` B

∆ ` A (B
((I)

∆ ` A (B ∆′ ` A

∆,∆′ ` B
((E)

∆ ` A ∆′ ` B

∆,∆′ ` A⊗ B
(⊗I)

∆ ` A⊗ B ∆′,A,B ` C

∆,∆′ ` C
(⊗E)

∆ ` A

∆ ` A⊕ B
(⊕I1)

∆ ` B

∆ ` A⊕ B
(⊕I2)

∆,A ` C ∆,B ` C

∆,A⊕ B ` C
(⊕E)

∆ ` A ∆ ` B

∆ ` A&B
(&I)

∆ ` A&B

∆ ` A
(&E1)

∆ ` A&B

∆ ` B
(&E2)

Hype for Types Linear Logic and Session Types November 10, 2020 16 / 21

Session Types

Hype for Types Linear Logic and Session Types November 10, 2020 17 / 21

Back to Curry-Howard

Constructive Logic Linear Logic
Functional programming Concurrent programming

Functions Processes
“SML” types Session types

Evaluation Owls

Note

In the context of imperative programming: a memory cell can be thought
of as a process that “remembers” some data.

Hype for Types Linear Logic and Session Types November 10, 2020 18 / 21

Processes

Processes (wizards) communicate across channels (owls) by sending
and receiving messages (letters)

decl P : (x1 : A1)(x2 : A2)...(xn : An) ` (x : A)

The Process Judgment

“Process P provides a channel x carrying type A, using channels x1, ..., xn
carrying A1, ...,An.”

Hype for Types Linear Logic and Session Types November 10, 2020 19 / 21

Live Coding

Hype for Types Linear Logic and Session Types November 10, 2020 20 / 21

Conclusion

Things We Talked About

Linearity as a way of representing state

Linear propositions in terms of resources

The Curry-Howard correspondence between linear logic and session
types

Writing programs with processes1

Things We Didn’t Cover

Concurrent programming (spawning processes in parallel)

Resource tracking (identify the cost of different programs)
I Amortized analysis
I Automatic bound derivation
I Granularity control?

1https://bitbucket.org/fpfenning/rast/src/master/
Hype for Types Linear Logic and Session Types November 10, 2020 21 / 21

	Linear Logic
	The Linear Rules
	Session Types
	Live Coding

