Dependent Types

Hype for Types

November 18, 2020

Safe Printing

Detypify

Consider these well typed expressions:
sprintf "nice"
sprintf "\%d"5
sprintf "\%s,\%d" "wow" 32

What is the type of sprintf? Well... it depends.

Types have types too

The type of sprintf depends on the value of the argument. In order to compute the type of sprintf, we'll need to write a function that takes a string (char list), and returns a type!

$$
\begin{aligned}
& \text { (* sprintf } s \text { : char list } \rightarrow \text { formatType } s \text { *) } \\
& \text { val formatType : char list }->\text { Type }=f n \\
& \text { [] => char list } \\
& \text { "\%": :"d": cs }=>\text { int } \rightarrow \text { formatType cs } \\
& \text { "\%": "s": cs => string } \rightarrow \text { formatType cs } \\
& \text { _ : cs } \quad=\text { formatType cs }
\end{aligned}
$$

Quantification

Ok, we can express the type of sprintf s for some argument s, but what's the type of sprintf?
Recall that when we wanted to express a type like "A -> A for some A", we introduced universal quantification over types: \forall A.A \rightarrow A. What if we had universal quantification over values?
sprintf : (s : char list) -> formatType s

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

$$
(x: \tau) \rightarrow A \equiv \forall x: \tau \cdot A
$$

This type can also be written like so:
(1) $\forall(x: \tau) \rightarrow A$
(2) $\forall x: t . A$
(3) $\Pi_{x: \tau} A$

Question:

Do we need two kinds of arrow now?
One for dependent quantification and one normal?
Nope!
$A \rightarrow B \equiv(-: A) \rightarrow B$

Some Rules

$$
\frac{\Gamma, x: \tau \vdash e: A \quad \Gamma, x: \tau \vdash A: \text { Type }}{\Gamma \vdash \lambda(x: \tau) e:(x: \tau) \rightarrow A} \quad \frac{\Gamma \vdash e_{1}:(x: \tau) \rightarrow A \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash e_{1} e_{2}:\left[e_{2} / x\right] A}
$$

Vectors Again

If we can write functions from values to types, can we define new types which depend on values?

```
type Vec : Type -> Nat -> Type =
    | Nil : (a : Type) -> Vec a 0
    | Cons : (a : Type) -> (n : Nat) ->
                            a -> Vec a n -> Vec a (n+1)
```

```
val n = 1 + 2
val xs : Vec string n =
    Cons string 2 "hype" (
    Cons string 1 (Int.toString (n+1))
        Cons string 0 "types" (Nil string)))
```


Vectors are actually usable now!

$$
\begin{aligned}
& \text { val append : (a : Type) }->(\mathrm{n} m: \text { Nat) }-> \\
& \text { Ven a } n-> \\
& \text { fec a m -> } \\
& \text { Ven a }(\mathrm{n}+\mathrm{m}) \\
& \text { val repeat }:(\mathrm{a}: \text { Type) } \rightarrow \text { (} \mathrm{n} \text { : nat) }-> \\
& \text { a -> } \\
& \text { Vc an } \\
& \text { val filter : (a : Type) } \rightarrow \text { (} \mathrm{n} \text { : Nat) }-> \\
& \text { (a }->\text { boo) -> } \\
& \text { Vc a } n \text {-> } \\
& \text { Nat } \times \text { Vc a ? ? }
\end{aligned}
$$

Duality

If we can quantify over the argument to a function, can we quantify over the left element of a tuple?
Yes!

$$
(x: \tau) \times A \equiv \exists x: \tau . A
$$

This type can also be written:
(1) $\{x: \tau \mid A\}$
(2) $\Sigma_{x: \tau} A$

As before, $A \times B \equiv(-: A) \times B$

$$
\begin{aligned}
\text { val filter }: & (a: \text { Type }) \rightarrow>(n: N a t) ~-> \\
& (a->\text { bool) }-> \\
& \text { Vec } a n-> \\
& (m: N a t) \times \text { Vec } a m
\end{aligned}
$$

More Rules

$$
\begin{array}{ll}
\frac{\Gamma \vdash e_{1}: \tau}{} \quad \Gamma \vdash e_{2}:\left[e_{1} / x\right] A & \Gamma, x: \tau \vdash A: \text { Type } \\
\Gamma \vdash\left(e_{1}, e_{2}\right):(x: \tau) \times A \\
\frac{\Gamma \vdash e:(x: \tau) \times A}{\Gamma \vdash \pi_{1} e: \tau} & \frac{\Gamma \vdash e:(x: \tau) \times A}{\Gamma \vdash \pi_{2} e:\left[\pi_{1} e / x\right] A}
\end{array}
$$

Ok, so what?

Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:

```
(* REQUIRES : input sequence is sorted *)
val search : int -> int seq -> int option
> search 3 [5,4,3] ==> NONE
> "search is broken!"
> piazza post ensues
```

The 122 solution:
//@requires is_sorted (xs)
Nice, but only works at runtime. What if passing search a non-sorted list was type error?

A simpler example

(* REQUIRES : second argument is greater than zero *) val div : Nat $->$ Nat $->$ Nat

Comment contracts are not great, solutions?
val div : Nat $->$ Nat $->$ Nat option
Incurs runtime cost to check for zero, and you still have to fail if it happens.
val div : Nat \rightarrow ($\mathrm{n}:$ Nat) $\times(1 \leq \mathrm{n}) \rightarrow$ Nat
Dividing by zero is impossible! And we incur no runtime cost to prevent it. What does a value of type $(n: N a t) \times(1 \leq n)$ look like?

$$
(3, \text { conceptsHW1.pdf }):(n: N a t) \times(1 \leq n)
$$

Question:

What goes in the PDF?

15-151 Refresher

What constitutes a proof of $n \leq m$?
We just have to define what (\leq) means!
(1) $\forall n .0 \leq n$
(2) $\forall m n . n \leq m \Rightarrow n+1 \leq m+1$

This looks familiar!
type (\leq) : Nat -> Nat -> Type =
| LeqZ : ($\mathrm{n}:$ Nat) $->0 \leq n$
| LeqS : (n : Nat) -> (m : Nat) ->

$$
\mathrm{n} \leq \mathrm{m}->(\mathrm{n}+1) \leq(\mathrm{m}+1)
$$

LeqZ $3: 0 \leq 3$
LeqZ $43: 0 \leq 43$
LeqS 02 (LeqZ 2) : $1 \leq 3$
(3, LeqS $02($ LeqZ 2) $):(n: N a t) \times(1 \leq n)$

Some Sort of Contract

```
type NatList : Type =
    | Nil : NatList
    | Cons : Nat -> NatList -> NatList
```

type Sorted : NatList -> Type =
| NilSorted : Sorted Nil
| SingSorted : (n : Nat) -> Sorted (Cons n Nil)
| ConsSorted : (n m : Nat) -> (xs : NatList) ->
$\mathrm{n} \leq \mathrm{m}$->
Sorted (Cons m xs) ->
Sorted (Cons n (Cons m xs))
val search : Nat ->
(xs : NatList) ->
Sorted xs ->
Nat option

A Type for Term Equality

If we can express a relation like less than or equal, how about equality?

```
type Eq : (a : Type) -> a -> a -> Type =
    | Refl : (a : Type) -> (x : a) -> Eq a x x
fun symm (a : Type) (x y : a) :
    Eq a x y -> Eq a y x =
    fn Refl A q => Refl A q
fun trans (a : Type) (x y z : a) :
    Eq a x y -> Eq a y z -> Eq a x z =
    fn Refl A q => fn Refl _ _ => Refl A q
val plus_comm : (n m : Nat) ->
    Eq Nat (n + m) (m + n)
val inf_primes : (n : nat) ->
    (m : Nat) }\times((m)>n) \times (Prime m)
```

