Introduction

Hype for Types Introduction and Lambda Calculus

Welcome to Hype for Types!

@ Instructors:

» Avery Cowan (acowan)
Brandon Wu (bjwu)
» Harrison Grodin (hgrodin)
James Gallicchio (jgallicc)

v

v

@ Attendance
> In general, you have to come to lecture to pass
» Let us know if you need to miss a week

@ Homework
» Every lecture will have an associated homework
» Graded on effort (not correctness)
» |If you spend more than an hour, please stop!

'Unless you're having fun!

Hype for Types Introduction and Lambda Calculus September 1, 2021 2/18

Other Stuff

@ Please join the Discord and Gradescope if you haven't

@ We assume everyone has 150 level knowledge of functional
programming and type systems

» If you don’t have this and feel really lost, send us a message on Discord

Hype for Types Introduction and Lambda Calculus September 1, 2021 3/18

Motivation

Hype for Types Introduction and Lambda Calculus

Programming is Hard

@ 1 + "hello"

@ fun f x = f x

@ goto not_yet_valid_case;
@ malloc(sizeof (int)); return;
o free(p); free(hA);
@ Qrequires is_sorted(A)
o Allen(p)]
HI, THIS 15 OH DEAR - DID HE | DID YOU REALLY WELL WEVE LOST THIS
YOUR SON' SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR' STUDENT RECORDS.
WERE HAVING SOME | a VY Robert'); DROP T HOPE YOURE HAPPY.
COMPUTER TROUBLE. / THBLE Shoerts;-~ 7
X AND T HOPE
) ~ OH. YES. LITTLE < YOUVE LEARNED
BORBY TARLES, O SNITIZE YOUR
iq WE CALL HIM. DATABASE INPUTS.

Hype for Types Introduction and Lambda Calculus

https://xkcd.com/327/

September 1, 2021

5/18

https://xkcd.com/327/

Types are... hype!

@ Rule out a whole class of errors at compile time
@ Expressively describe the shape of data
@ Could we do more?

Hype for Types Introduction and Lambda Calculus September 1, 2021 6/18

Lambda Calculus

Hype for Types Introduction and Lambda Calculus

Building a tiny language

The simply-typed lambda calculus is simple. It only has four features:
e Unit (“empty tuples”)
@ Booleans
@ Tuples

@ Functions

Hype for Types Introduction and Lambda Calculus September 1, 2021 8/18

Expressions

We represent our expressions using a grammar:

= x
Y

| false

| true

| if e; then e; else e3

| (e, e2)

| fst(e)

| snd(e)

| Ax:T. e

| el e

variable

unit

false boolean

true boolean

boolean case analysis

tuple

first tuple element

second tuple element
function abstraction (lambda)
function application

Hype for Types Introduction and Lambda Calculus September 1, 2021

9/18

Types

Similarly, we define our types as follows:

T = unit
| bool
| T1 X T2
| T1 — T2
Question
How do we check if e : 77 J

Hype for Types Introduction and Lambda Calculus

Inference Rules

In logic, we use inference rules to state how facts follow from other facts.

premise; premise,

conclusion
For example:

you are here you are hyped

you are hyped for types functions are values
it's raining x is outside A ancestor B B mother C
X is getting wet A ancestor C
n is a number f total x valuable
n+1is a number f x valuable

Hype for Types Introduction and Lambda Calculus September 1, 2021 11/18

Typing Rules: First Attempt

Consider the judgement e : 7 (“e has type 7). Let's try to express some
simple typing rules.

eg:bool e:7 e:7T

() : unit false : bool true : bool if e1 then ey else e3 : 7
€1 :7T1 €:.72 €:T1 X T2 €:T1 X T2
(e1,€2) 111 X T fst(e) : snd(e) : 7
Question
How do we write rules for functions? J

Hype for Types Introduction and Lambda Calculus September 1, 2021 12/18

Typing Rules: Functions

Let's give it a shot.

€1 :T7T1—>T2 €E.T1

€ € T2

Looks good so far...

e:m (7)

AX:IT1. €:T1 — T

Expressions only have types given a context!

Key Idea J

Hype for Types Introduction and Lambda Calculus September 1, 2021 13/18

Contexts

Intuition
If, given x : 71, we know e : 7, then Ax : 7y. e : 74 — . J

Therefore, we need a context (denoted I') which associates types with

variables.

Mx:mmbe:m
XX :7m.e:m11— 7

What types does some variable x have? It depends on the previous code!

x:7efl
MNex:7

Hype for Types Introduction and Lambda Calculus September 1, 2021 14 /18

All the rules!

T) (vt (aLsE)
—— (VAR —— (UNIT ———— (FALSE
NeEx:7 IE () : unit I - false : bool

e :bool THe:7 The3:T
——— (TRUE) - (1)
I+ true : bool Fif e; then ey else e5: 7

lFer:m ThFe:m lFe:m xXm
(Tup) (FST)

ME (e, e) 71 X7 [+ fst(e): 7

le:m xXm Nx:mkFe:m
— (sND) (ABS)
Fl—snd(e):rg rl—AXZTl.e:T1—>7'2

Fl—e1:71—>72 r|—622T1

APP
e e&:m ()

Hype for Types Introduction and Lambda Calculus September 1, 2021 15/18

Hype for Types Introduction and Lambda Calculus

Example: what's the type?

Let's derive that

- F (Ax : unit. (x,true)) () : unit x bool

by using the rules.

X :unit € -, x : unit
. " (var) . (TRUE)
<, X unit E x : unit +, X : unit = true : bool

- - (TuP)
-, x 1 unit = (x, true) : unit X bool

(ABS) (uNIT)
- F Ax :unit. (x, true) : unit — unit X bool < () ¢ uni

- F (Ax :unit. (x, true)) () : unit X bool

Homework Foreshadowing
That looks like a trace of a typechecking algorithm!

September 1, 2021

16/18

Get Hype.

Hype for Types Introduction and Lambda Calculus

The Future is Bright

How can you use basic algebra to manipulate types?
How do types and programs relate to logical proofs?
How can we automatically fold (and unfold) any recursive type?

How can types allow us to do safe imperative programming?

Can we make it so that programs that typecheck iff they're correct?

Hype for Types Introduction and Lambda Calculus September 1, 2021 18/18

	Introduction
	Motivation
	Lambda Calculus
	Defining the Language
	Type Checking

	Get Hype.

