Introduction

Welcome to Hype for Types!

- Instructors:
 - Avery Cowan (acowan)
 - ▶ Brandon Wu (bjwu)
 - ► Harrison Grodin (hgrodin)
 - James Gallicchio (jgallicc)
- Attendance
 - ▶ In general, you have to come to lecture to pass
 - Let us know if you need to miss a week
- Homework
 - Every lecture will have an associated homework
 - Graded on effort (not correctness)
 - ▶ If you spend more than an hour, please stop¹

¹Unless you're having fun!

Other Stuff

- Please join the Discord and Gradescope if you haven't
- We assume everyone has 150 level knowledge of functional programming and type systems
 - ▶ If you don't have this and feel really lost, send us a message on Discord

Motivation

Programming is Hard

- 1 + "hello"
- fun f x = f x
- goto not_yet_valid_case;
- malloc(sizeof(int)); return;
- free(A); free(A);
- @requires is_sorted(A)
- A[len(A)]

https://xkcd.com/327/

Types are... hype!

- Rule out a whole class of errors at compile time
- Expressively describe the shape of data
- Could we do more?

Lambda Calculus

Building a tiny language

The simply-typed lambda calculus is simple. It only has four features:

- Unit ("empty tuples")
- Booleans
- Tuples
- Functions

Expressions

We represent our expressions using a grammar.

```
variable
                                 unit
false
                                 false boolean
                                 true boolean
true
if e<sub>1</sub> then e<sub>2</sub> else e<sub>3</sub>
                                boolean case analysis
\langle e_1, e_2 \rangle
                                 tuple
fst(e)
                                 first tuple element
snd(e)
                                 second tuple element
\lambda x : \tau. e
                                 function abstraction (lambda)
                                 function application
e_1 e_2
```

Types

Similarly, we define our types as follows:

$$\begin{array}{ccc} \tau & ::= & \mathbf{unit} \\ & | & \mathbf{bool} \\ & | & \tau_1 \times \tau_2 \\ & | & \tau_1 \to \tau_2 \end{array}$$

Question

How do we check if $e : \tau$?

Inference Rules

In logic, we use inference rules to state how facts follow from other facts.

$$\frac{\mathsf{premise}_1 \quad \mathsf{premise}_2 \quad \dots}{\mathsf{conclusion}}$$

For example:

you are hereyou are hypedyou are hyped for typesfunctions are valuesit's raining
$$x$$
 is outside x is getting wetA ancestor x ancestor x and x

Typing Rules: First Attempt

Consider the judgement $e:\tau$ ("e has type τ "). Let's try to express some simple typing rules.

 $\frac{e_1: \textbf{bool} \quad e_2: \tau \quad e_3: \tau}{\langle \rangle: \textbf{unit}} \qquad \frac{e_1: \textbf{bool} \quad e_2: \tau \quad e_3: \tau}{\textbf{if} \ e_1 \ \textbf{then} \ e_2 \ \textbf{else} \ e_3: \tau}$

 $\frac{e_1 : \tau_1 \quad e_2 : \tau_2}{\langle e_1, e_2 \rangle : \tau_1 \times \tau_2} \qquad \frac{e : \tau_1 \times \tau_2}{\mathsf{fst}(e) : \tau_1}$

 $\frac{e:\tau_1\times\tau_2}{\mathsf{snd}(e):\tau_2}$

Question

How do we write rules for functions?

Typing Rules: Functions

Let's give it a shot.

$$\frac{e_1:\tau_1\to\tau_2\quad e_2:\tau_1}{e_1\ e_2:\tau_2}$$

Looks good so far...

$$\frac{e:\tau_2(?)}{\lambda x:\tau_1.\ e:\tau_1\to\tau_2}$$

Key Idea

Expressions only have types given a context!

Contexts

Intuition

If, given $x : \tau_1$, we know $e : \tau_2$, then $\lambda x : \tau_1$. $e : \tau_1 \to \tau_2$.

Therefore, we need a context (denoted Γ) which associates types with variables.

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1. \ e : \tau_1 \rightarrow \tau_2}$$

What types does some variable x have? It depends on the previous code!

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau}$$

All the rules!

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau}\ (\text{VAR}) \qquad \overline{\Gamma\vdash \langle\rangle: \textbf{unit}}\ (\text{UNIT}) \qquad \overline{\Gamma\vdash \textbf{false}: \textbf{bool}}\ (\text{FALSE})$$

$$\frac{\Gamma\vdash \textbf{true}: \textbf{bool}}{\Gamma\vdash \textbf{true}: \textbf{bool}}\ (\text{TRUE}) \qquad \frac{\Gamma\vdash e_1: \textbf{bool}}{\Gamma\vdash \textbf{e}_1: \textbf{bool}}\ \frac{\Gamma\vdash e_2:\tau}{\Gamma\vdash \textbf{if}\ e_1\ \textbf{then}\ e_2: \textbf{else}\ e_3:\tau} \ (\text{IF})$$

$$\frac{\Gamma\vdash e_1:\tau_1\quad \Gamma\vdash e_2:\tau_2}{\Gamma\vdash \langle e_1,e_2\rangle:\tau_1\times\tau_2}\ (\text{TUP}) \qquad \frac{\Gamma\vdash e:\tau_1\times\tau_2}{\Gamma\vdash \textbf{fst}(e):\tau_1}\ (\text{FST})$$

$$\frac{\Gamma\vdash e:\tau_1\times\tau_2}{\Gamma\vdash \textbf{snd}(e):\tau_2}\ (\text{SND}) \qquad \frac{\Gamma,x:\tau_1\vdash e:\tau_2}{\Gamma\vdash \lambda x:\tau_1.\ e:\tau_1\to\tau_2}\ (\text{ABS})$$

$$\frac{\Gamma\vdash e_1:\tau_1\to\tau_2}{\Gamma\vdash e_1:e_2:\tau_2}\ (\text{APP})$$

Example: what's the type?

Let's derive that

$$\cdot \vdash (\lambda x : \mathsf{unit}. \langle x, \mathsf{true} \rangle) \langle \rangle : \mathsf{unit} \times \mathsf{bool}$$

by using the rules.

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Get Hype.

The Future is Bright

- How can you use basic algebra to manipulate types?
- How do types and programs relate to logical proofs?
- How can we automatically fold (and unfold) any recursive type?
- How can types allow us to do safe imperative programming?
- Can we make it so that programs that typecheck iff they're correct?