Linear Logic and Linear Type Systems

Hype for Types

September 28, 2021

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

What We'll Talk About

@ A style of logic which treats variables differently than “standard” logic

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 2/22

What We'll Talk About

@ A style of logic which treats variables differently than “standard” logic

@ How to make malloc and free safe

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 2/22

What We'll Talk About

@ A style of logic which treats variables differently than “standard” logic
@ How to make malloc and free safe

@ What it looks like to code in a language with resource-aware types

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 2/22

Linear Logic

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

Malloc is Scary...

Consider the following C code:

int main () {
char *str;

N

3 str = (char *) malloc (13);

4 strcpy(str, "hypefortypes");
5 free(str);

6 return (0) ;

71+

In C, we have to make sure we allocate and deallocate every memory cell
exactly once.

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 4/22

Malloc is Scary...

Consider the following C code:

GA W N R

7|}

int main () {

char *str;

str = (char *) malloc (13);

strcpy(str,
free(str);
return (0) ;

"hypefortypes");

In C, we have to make sure we allocate and deallocate every memory cell
exactly once.

Question

Is there a way to make our types guarantee correctness?

Hype for Types Linear Logic and Linear Type Systems

September 28, 2021

4/22

The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.

Big Idea J

Proofs should no longer be persistent, but rather ephemeral.

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 5/22

The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.

Big Idea J

Proofs should no longer be persistent, but rather ephemeral.

Persistence is due to implicit structural rules: weakening and contraction.

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 5/22

Weakening

1lint main() {

2 int *x = (int *) malloc(sizeof (int));
3 *x = 3;

4 return O;

N

[} = =
Hype for Types Linear Logic and Linear Type Systems

Weakening

-

int main() {
int *x = (int *) malloc(sizeof (int));
*x = 3;
return O;

}

o A W N

Weakening: we can “drop” assumptions

Nle: T

— (WEAK
F,X:T'I—e:T()

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 6/22

Contraction

void f(int =*x) {
free(x);

-

3

int main() {
int *x = (int *) malloc(sizeof (int));
*x = 3;
f(x);
f(x);
10 return 0;

11| }

© 0 N o O s~ W N

Hype for Types Linear Logic and Linear Type Systems

September 28, 2021

7/22

-

© 0 N o O s~ W N

10
11

Contraction

void f(int =*x) {

3

free(x);

int main() {

}

int *x = (int *) malloc(sizeof (int));
*x = 3;

f(x);

f(x);

return 0;

Contraction: we can “duplicate” assumptions

Moxi:T,x:THe:T

CNTR
Cox 7k [x,x/x1, xo]e : 7/ ()

Hype for Types Linear Logic and Linear Type Systems September 28, 2021

7/22

Introduction to Linear Logic

In linear logic, we have neither weakening nor contraction.
@ Requirement that we use each piece of data exactly once - no
duplication, no dropping
@ Comes with an inherent idea of “resources” that are used up

@ Allows us to write safe, stateful (imperative!) programs

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 8/22

The Linear Rules

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

|dentity

Constructive Logic

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

|dentity

Constructive Logic Linear Logic
x:Ael
(HyP) — (Hvyp)
Ne=x:A x:AFx: A

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 10/22

|dentity

Constructive Logic Linear Logic
x:Ael
(HyP) (HyP)
Ne=x:A x:AFx: A
Intuition
“Given A and nothing else, we can use up A” J

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 10/22

Conjunction

Constructive Logic

rl—e]_ZAl I'I—e2:A2

AT)
M+ (el,e2> 2A1/\A2
lFe: A1 NA lFe: AT NA
L ARR LR SRR p)
[+ fst(e) : Ay [+ snd(e) : A

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 11/22

Conjunction

Constructive Logic

rl—e]_ZAl I'I—e2:A2

AT)
M+ (el,e2> 2A1/\A2
lFe: A1 NA lFe: AT NA
L ARR LR SRR p)
[+ fst(e) : Ay [+ snd(e) : A

Linear Logic

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 11/22

Conjunction

Constructive Logic

rl—e]_ZAl r|—62:A2

AT)
M+ (el,e2> 2A1/\A2
lFe: A1 NA lFe: AT NA
L ARR LR SRR p)
[+ fst(e) : Ay [+ snd(e) : A

Linear Logic

A1|—€12A1 A2|—622A2
A1, Ax k- (e1,e) : AL ® A

(®I)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 11/22

Conjunction

Constructive Logic

rl—e]_ZAl r|—62:A2

AT)
M+ (el,e2> 2A1/\A2
lFe: A1 NA lFe: AT NA
L ARR LR SRR p)
[+ fst(e) : Ay [+ snd(e) : A

Linear Logic

A1|—€12A1 A2|—622A2
A1, Ax k- (e1,e) : AL ® A

(®I)

AFe A ® A A/,XliAl,XglAzl—ezic
AN Flet (xi,x)=e ine:C

(RE)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 11/22

Disjunction
Constructive Logic

Ne: Ar e A

(Vh) - (Vk)
N Lefte: AV A '+ Right e : A; V A

Fe:A VA MNx1:Ai ke : B MNx:AFe:B
ltcaseeof xy = e | xo = e : B

(VE)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 12/22

Disjunction
Constructive Logic

Ne: Ar e A

(Vh) - (Vk)
N Lefte: AV A '+ Right e : A; V A

Fe:A VA MNx1:Ai ke : B MNx:AFe:B
ltcaseeof xy = e | xo = e : B

(VE)

Linear Logic

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 12/22

Disjunction
Constructive Logic

Ne: Ar e A

(Vh) - (Vk)
N Lefte: AV A '+ Right e : A; V A

Fe:A VA MNx1:Ai ke : B MNx:AFe:B
ltcaseeof xy = e | xo = e : B

(VE)

Linear Logic

AFe: A
AFLefte: A D A,

(@I1)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021

12/22

Disjunction

Constructive Logic

Ne: Ar e A
(Vh) : (Vhk)
N Lefte: AV A '+ Right e : A; V A
Fe:A VA MNx1:Ai ke : B I',Xz:Azl—ezzB(vE)
ltcaseeof xy = e | xo = e : B
Linear Logic
Ale: A Ale: A
(e11) : (e12)
Al Lefte: A; ® As AF Right e: A1 & Ay

Hype for Types Linear Logic and Linear Type Systems September 28, 2021

12/22

Disjunction

Constructive Logic

Ne: A [He: A
(Vh) : (Vk)
NFLeft e: Ay V As I Right e: A; V Ay
Fe:A VA MNx1:AkFe B r,X2:A2|—62:B(vE)
ltcaseeof xy = e | xo = e : B
Linear Logic
Ale: A Ale: A
(@I1) . (@12)
Al Lefte: A; ® As AF Right e: A1 & Ay

AFe: A1 ® A A xi:AllFe B AN xo:AFe: B

A/A' Fcaseeof x; = e | xo= e : B

Hype for Types Linear Logic and Linear Type Systems

September 28, 2021

(PE)

12/22

Towards a Linear C°

%Fine, CO. =) - = = Ha o
Hype for Types Linear Logic and Linear Type Systems

What are resources in C0?

@ int? string? intx?

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

What are resources in C0?7

@ int? string? intx?
@ We'll just treat pointers as linear

@ Use a reusable context, [, to represent reusable variables and a
linear context, A\, for linear variables

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 14 /22

What are resources in C0?7

@ int? string? intx?
@ We'll just treat pointers as linear

@ Use a reusable context, [, to represent reusable variables and a
linear context, A\, for linear variables

(VAR-REUSABLE)
Mx:7-Fx:71

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 14 /22

What are resources in C0?7

@ int? string? intx?
@ We'll just treat pointers as linear

@ Use a reusable context, [, to represent reusable variables and a
linear context, A\, for linear variables

(VAR-REUSABLE) ———— (VAR-LINEAR)
Mx:7-Fx:71 Mx:7FHx:7

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 14 /22

Resource Splitting: Operators

In CO, we have built-in operators (e.g., +, -)

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

Resource Splitting: Operators

In CO, we have built-in operators (e.g., +, -).

+: (int,int) — int - : (int,int) — int == (int,int) — bool

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 15/22

Resource Splitting: Operators

In CO, we have built-in operators (e.g., +, -).

+: (int,int) — int - : (int,int) — int == (int,int) — bool

@Z(T]_,TQ)-)T lFe:m e :m
lFeg@e:T

(SML BINOP)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 15/22

Resource Splitting: Operators

In CO, we have built-in operators (e.g., +, -).

+: (int,int) — int - : (int,int) — int == (int,int) — bool

@Z(T]_,TQ)-)T e :m e :m
lFeg@e:T

(SML BINOP)

©:(r,m) =T ATk e 7 A e m
r;Al,Agl—el®6227'

(C0 BiNOP)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 15/22

Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 16 /22

Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(T1,...,Th) = T H2ke:m (Vi)
7 f(er,....en): 7

(CO APPLICATION)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 16 /22

Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(Tl,...,T,,)—>T r;A,'l—e,'ZT,' (\V/I)
A, ., Ay f(er,....en): T

(CO APPLICATION)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 16 /22

Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(Tl,...,Tn)—)T r;A,'l—e,'ZT,' (VI)
A, ., Ay f(er,....en): T

(CO APPLICATION)

i{int* foo(int* a, int* b) {

2 free(a); return b;

3|}

4

s|int main() {

6 int* x = alloc(int);

7 int* y = foo(x, x); // now a type error!
8 free(y);

9 return O;

10| +

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 16 /22

N

S~ 0w

© 0w N o O»

10
11
12

Resource Splitting: Null Checks

In general, pointer equality won't make sense in our language, since all

pointers should be distinct.
However, in C, we need a way to check if pointers are NULL! Introducing:

int* create() /* ... x/

int

main () {

int* x = create();

if (x is NULL) {

}

return O;

else {

int y = *x; // still have x here!
return y;

Hype for Types Linear Logic and Linear Type Systems

September 28, 2021

17/22

Resource Splitting: Null Checks

(NurL)
7 NULL: 7*

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

Resource Splitting: Null Checks

(NuLL)
M-+ NULL: 7"

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

Resource Splitting: Null Checks

(NuLL)
M-+ NULL: 7"

7He :m 7FHe:mn
[A x 7 Fifnull(x; er; e)

(IFNULL)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 18/22

Resource Splitting: Null Checks

(NuLL)
M-+ NULL: 7"

AFe :m [7FHe:m
[A x 7 Fifnull(x; er; e)

(IFNULL)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 18 /22

Resource Splitting: Null Checks

(NuLL)
M-+ NULL: 7"

AFe :m A x: 1T e m
[A x 7 Fifnull(x; er; e)

(IFNULL)

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 18 /22

Resource Tracking: Struct Introduction

Just like standard CO, we can allocate structs:

N

struct list {

2 int head;

3 struct list* tail;

4l

5

6| struct list* nil () {

7 return NULL;

8|}

9

10| struct list* cons(int x, struct list* xs) {
11 struct list* node = alloc(struct list);

12 node->head = x;

13 node->tail = xs;

14 return node;

15| }

Y

Resource Tracking: Struct Elimination
Problem

We can't eliminate structs like we used to. How will we know that each
field is used exactly once?

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 20/22

Resource Tracking: Struct Elimination
Problem

We can't eliminate structs like we used to. How will we know that each
field is used exactly once?

Structs are just like products - so, pattern match!

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 20/22

Resource Tracking: Struct Elimination

Problem

We can't eliminate structs like we used to. How will we know that each
field is used exactly once?

Structs are just like products - so, pattern match!

struct list {
int head;
struct list* tail;

T

int list_sum(struct listx 1) {
if (1 is NULL)
return O;

10 let { head = x; tail = xs; } = 1; // new syntax
11 return x + list_sum(xs);

12| }

Hype for Types Linear Logic and Linear Type Systems September 28, 2021

20/ 22

Live Coding

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

Conclusion

Things We Talked About

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems

Conclusion

Things We Talked About

@ Linearity as a way of representing state

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 22/22

Conclusion

Things We Talked About
@ Linearity as a way of representing state

@ Linear propositions in terms of resources

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 22/22

Conclusion

Things We Talked About
@ Linearity as a way of representing state
@ Linear propositions in terms of resources

@ A practical example of linear logic for memory safety

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 22/22

Conclusion

Things We Talked About
@ Linearity as a way of representing state
@ Linear propositions in terms of resources

@ A practical example of linear logic for memory safety

Things We Didn’t Cover

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 22/22

Conclusion

Things We Talked About
@ Linearity as a way of representing state
@ Linear propositions in terms of resources

@ A practical example of linear logic for memory safety
Things We Didn’t Cover

@ Linear logic is actually all about processes and messages
» Concurrency!

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 22/22

Conclusion

Things We Talked About
@ Linearity as a way of representing state
@ Linear propositions in terms of resources

@ A practical example of linear logic for memory safety

Things We Didn’t Cover
@ Linear logic is actually all about processes and messages
» Concurrency!

@ Resource tracking (identify the cost of different programs)
@ Rust

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 22/22

	Linear Logic
	The Linear Rules
	Towards a Linear CFine, C0.
	Live Coding

