Linear Logic and Linear Type Systems

Hype for Types

September 28, 2021

What We'll Talk About

• A style of logic which treats variables differently than "standard" logic

What We'll Talk About

- A style of logic which treats variables differently than "standard" logic
- How to make malloc and free safe

What We'll Talk About

- A style of logic which treats variables differently than "standard" logic
- How to make malloc and free safe
- What it looks like to code in a language with resource-aware types

Malloc is Scary...

Consider the following C code:

```
int main () {
   char *str;
   str = (char *) malloc(13);
   strcpy(str, "hypefortypes");
   free(str);
   return(0);
}
```

In C, we have to make sure we allocate and deallocate every memory cell exactly once.

Malloc is Scary...

Consider the following C code:

```
int main () {
   char *str;
   str = (char *) malloc(13);
   strcpy(str, "hypefortypes");
   free(str);
   return(0);
}
```

In C, we have to make sure we allocate and deallocate every memory cell exactly once.

Question

Is there a way to make our types guarantee correctness?

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be *persistent*, but rather *ephemeral*.

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be persistent, but rather ephemeral.

Persistence is due to implicit structural rules: weakening and contraction.

Weakening

```
int main() {
  int *x = (int *) malloc(sizeof(int));
  *x = 3;
  return 0;
}
```

Weakening

```
int main() {
   int *x = (int *) malloc(sizeof(int));
   *x = 3;
   return 0;
}
```

Weakening: we can "drop" assumptions

$$\frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau}$$
 (Weak)

Contraction

```
void f(int *x) {
   free(x);
2
3 }
 int main() {
   int *x = (int *) malloc(sizeof(int));
6
   *x = 3;
7
   f(x);
   f(x);
   return 0;
10
```

Contraction

```
void f(int *x) {
   free(x);
 int main() {
  int *x = (int *) malloc(sizeof(int));
 *x = 3;
f(x);
f(x);
return 0;
```

Contraction: we can "duplicate" assumptions

$$\frac{\Gamma, x_1 : \tau, x_2 : \tau \vdash e : \tau'}{\Gamma, x : \tau \vdash [x, x/x_1, x_2]e : \tau'} \; (\texttt{Cntr})$$

Introduction to Linear Logic

In **linear logic**, we have neither weakening nor contraction.

- Requirement that we use each piece of data exactly once no duplication, no dropping
- Comes with an inherent idea of "resources" that are used up
- Allows us to write safe, stateful (imperative!) programs

The Linear Rules

Identity

Constructive Logic

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A}\;(\mathrm{Hyp})$$

Identity

Constructive Logic

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A}\;(\mathrm{Hyp})$$

$$\overline{x:A \vdash x:A}$$
 (HYP)

Identity

Constructive Logic

Linear Logic

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A}\;(\mathrm{Hyp})$$

$$\overline{x:A \vdash x:A}$$
 (HYP)

Intuition

"Given A and nothing else, we can use up A"

Constructive Logic

$$\frac{\Gamma \vdash e_1 : A_1 \qquad \Gamma \vdash e_2 : A_2}{\Gamma \vdash \langle e_1, e_2 \rangle : A_1 \land A_2} \ (\land I)$$

$$\frac{\Gamma \vdash e : A_1 \land A_2}{\Gamma \vdash \mathbf{fst}(e) : A_1} \ (\land E1) \qquad \qquad \frac{\Gamma \vdash e : A_1 \land A_2}{\Gamma \vdash \mathbf{snd}(e) : A_2} \ (\land E2)$$

Constructive Logic

$$\frac{\Gamma \vdash e_1 : A_1 \qquad \Gamma \vdash e_2 : A_2}{\Gamma \vdash \langle e_1, e_2 \rangle : A_1 \land A_2} \ (\land I)$$

$$\frac{\Gamma \vdash e : A_1 \land A_2}{\Gamma \vdash \mathbf{fst}(e) : A_1} \ (\land E1) \qquad \qquad \frac{\Gamma \vdash e : A_1 \land A_2}{\Gamma \vdash \mathbf{snd}(e) : A_2} \ (\land E2)$$

Constructive Logic

$$\frac{\Gamma \vdash e_1 : A_1 \qquad \Gamma \vdash e_2 : A_2}{\Gamma \vdash \langle e_1, e_2 \rangle : A_1 \land A_2} \ (\land I)$$

$$\frac{\Gamma \vdash e : A_1 \land A_2}{\Gamma \vdash \mathbf{fst}(e) : A_1} \ (\land E1) \qquad \qquad \frac{\Gamma \vdash e : A_1 \land A_2}{\Gamma \vdash \mathbf{snd}(e) : A_2} \ (\land E2)$$

$$\frac{\Delta_1 \vdash e_1 : A_1 \quad \Delta_2 \vdash e_2 : A_2}{\Delta_1, \Delta_2 \vdash \langle e_1, e_2 \rangle : A_1 \otimes A_2} \ (\otimes I)$$

Constructive Logic

$$\frac{\Gamma \vdash e_1 : A_1 \qquad \Gamma \vdash e_2 : A_2}{\Gamma \vdash \langle e_1, e_2 \rangle : A_1 \land A_2} \ (\land I)$$

$$\frac{\Gamma \vdash e : A_1 \land A_2}{\Gamma \vdash \mathsf{fst}(e) : A_1} \ (\land E1) \qquad \qquad \frac{\Gamma \vdash e : A_1 \land A_2}{\Gamma \vdash \mathsf{snd}(e) : A_2} \ (\land E2)$$

$$\frac{\Delta_1 \vdash e_1 : A_1 \quad \Delta_2 \vdash e_2 : A_2}{\Delta_1, \Delta_2 \vdash \langle e_1, e_2 \rangle : A_1 \otimes A_2} \ (\otimes I)$$

$$\frac{\Delta \vdash e_1 : A_1 \otimes A_2 \qquad \Delta', x_1 : A_1, x_2 : A_2 \vdash e_2 : C}{\Delta, \Delta' \vdash \mathbf{let} \ \langle x_1, x_2 \rangle = e_1 \ \mathbf{in} \ e_2 : C} \ (\otimes E)$$

Constructive Logic

$$\frac{\Gamma \vdash e : A_1}{\Gamma \vdash \mathbf{Left} \ e : A_1 \lor A_2} \ (\lor \mathit{I}_1) \qquad \qquad \frac{\Gamma \vdash e : A_2}{\Gamma \vdash \mathbf{Right} \ e : A_1 \lor A_2} \ (\lor \mathit{I}_2)$$

$$\frac{\Gamma \vdash e : A_1 \lor A_2 \qquad \Gamma, x_1 : A_1 \vdash e_1 : B \qquad \Gamma, x_2 : A_2 \vdash e_2 : B}{\Gamma \vdash \textbf{case } e \textbf{ of } x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : B} \ (\lor E)$$

Constructive Logic

$$\frac{\Gamma \vdash e : A_1}{\Gamma \vdash \mathbf{Left} \ e : A_1 \lor A_2} \ (\lor \mathit{I}_1) \qquad \qquad \frac{\Gamma \vdash e : A_2}{\Gamma \vdash \mathbf{Right} \ e : A_1 \lor A_2} \ (\lor \mathit{I}_2)$$

$$\frac{\Gamma \vdash e : A_1 \lor A_2 \qquad \Gamma, x_1 : A_1 \vdash e_1 : B \qquad \Gamma, x_2 : A_2 \vdash e_2 : B}{\Gamma \vdash \textbf{case} \ e \ \textbf{of} \ x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : B} \ (\lor E)$$

Constructive Logic

$$\frac{\Gamma \vdash e : A_1}{\Gamma \vdash \mathbf{Left} \ e : A_1 \lor A_2} \ (\lor \mathit{I}_1) \\ \qquad \frac{\Gamma \vdash e : A_2}{\Gamma \vdash \mathbf{Right} \ e : A_1 \lor A_2} \ (\lor \mathit{I}_2)$$

$$\frac{\Gamma \vdash e : A_1 \lor A_2 \qquad \Gamma, x_1 : A_1 \vdash e_1 : B \qquad \Gamma, x_2 : A_2 \vdash e_2 : B}{\Gamma \vdash \textbf{case} \ e \ \textbf{of} \ x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : B} \ (\lor E)$$

$$\frac{\Delta \vdash e : A_1}{\Delta \vdash \textbf{Left} \ e : A_1 \oplus A_2} \ (\oplus I1)$$

Constructive Logic

$$\frac{\Gamma \vdash e : A_1}{\Gamma \vdash \mathbf{Left} \ e : A_1 \lor A_2} \ (\lor I_1) \qquad \qquad \frac{\Gamma \vdash e : A_2}{\Gamma \vdash \mathbf{Right} \ e : A_1 \lor A_2} \ (\lor I_2)$$

$$\frac{\Gamma \vdash e : A_1 \lor A_2 \qquad \Gamma, x_1 : A_1 \vdash e_1 : B \qquad \Gamma, x_2 : A_2 \vdash e_2 : B}{\Gamma \vdash \textbf{case} \ e \ \textbf{of} \ x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : B} \ (\lor E)$$

$$\frac{\Delta \vdash e : A_1}{\Delta \vdash \textbf{Left} \ e : A_1 \oplus A_2} \ (\oplus \text{I1}) \qquad \qquad \frac{\Delta \vdash e : A_2}{\Delta \vdash \textbf{Right} \ e : A_1 \oplus A_2} \ (\oplus \text{I2})$$

Constructive Logic

$$\frac{\Gamma \vdash e : A_1}{\Gamma \vdash \mathbf{Left} \ e : A_1 \lor A_2} \ (\lor I_1) \qquad \qquad \frac{\Gamma \vdash e : A_2}{\Gamma \vdash \mathbf{Right} \ e : A_1 \lor A_2} \ (\lor I_2)$$

$$\frac{\Gamma \vdash e : A_1 \lor A_2 \qquad \Gamma, x_1 : A_1 \vdash e_1 : B \qquad \Gamma, x_2 : A_2 \vdash e_2 : B}{\Gamma \vdash \textbf{case } e \textbf{ of } x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : B} \ (\lor E)$$

$$\frac{\Delta \vdash e : A_1}{\Delta \vdash \textbf{Left} \ e : A_1 \oplus A_2} \ (\oplus I1) \\ \qquad \frac{\Delta \vdash e : A_2}{\Delta \vdash \textbf{Right} \ e : A_1 \oplus A_2} \ (\oplus I2)$$

$$\frac{\Delta \vdash e : A_1 \oplus A_2 \qquad \Delta', x_1 : A_1 \vdash e_1 : B \qquad \Delta', x_2 : A_2 \vdash e_2 : B}{\Delta, \Delta' \vdash \textbf{case} \ e \ \textbf{of} \ x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 : B} \ (\oplus \mathrm{E})$$

Towards a Linear C⁰

• int? string? int*?

- int? string? int*?
- We'll just treat pointers as linear
- Use a reusable context, Γ, to represent reusable variables and a linear context, Δ, for linear variables

- int? string? int*?
- We'll just treat pointers as linear
- Use a reusable context, Γ, to represent reusable variables and a linear context, Δ, for linear variables

$$\frac{}{\Gamma, x : \tau; \cdot \vdash x : \tau}$$
 (Var-Reusable)

- int? string? int*?
- We'll just treat pointers as linear
- Use a reusable context, Γ, to represent reusable variables and a linear context, Δ, for linear variables

$$\frac{}{\Gamma,x:\tau;\cdot\vdash x:\tau}\;(\text{Var-Reusable})\qquad \frac{}{\Gamma;x:\tau\vdash x:\tau}\;(\text{Var-Linear})$$

Resource Splitting: Operators

In C0, we have built-in operators (e.g., +, -).

Resource Splitting: Operators

In C0, we have built-in operators (e.g., +, -).

$$+: (\mathsf{int}, \mathsf{int}) \to \mathsf{int}$$

$$\textbf{-}: (\textbf{int}, \textbf{int}) \rightarrow \textbf{int}$$

$$==:(\mathsf{int},\mathsf{int})\to\mathsf{bool}$$

Resource Splitting: Operators

In C0, we have built-in operators (e.g., +, -).

$$\frac{\odot: (\tau_1, \tau_2) \to \tau \qquad \Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 \odot e_2 : \tau} \; (\text{SML BinOp})$$

Resource Splitting: Operators

In C0, we have built-in operators (e.g., +, -).

$$\overline{+:(\mathsf{int},\mathsf{int}) o \mathsf{int}} \qquad \overline{-:(\mathsf{int},\mathsf{int}) o \mathsf{int}} \qquad \overline{==:(\mathsf{int},\mathsf{int}) o \mathsf{bool}}$$

$$\frac{\odot: \big(\tau_1, \tau_2\big) \to \tau \qquad \Gamma \vdash e_1: \tau_1 \qquad \Gamma \vdash e_2: \tau_2}{\Gamma \vdash e_1 \odot e_2: \tau} \; (\text{SML BinOp})$$

$$\frac{\odot: \left(\tau_1, \tau_2\right) \to \tau \qquad \Gamma; \Delta_1 \vdash e_1 : \tau_1 \qquad \Gamma; \Delta_2 \vdash e_2 : \tau_2}{\Gamma; \Delta_1, \Delta_2 \vdash e_1 \odot e_2 : \tau} \; (\text{C0 BinOp})$$

$$\frac{(\tau_1, \dots, \tau_n) \to \tau \qquad \Gamma; ? \vdash e_i : \tau_i \quad (\forall i)}{\Gamma; ? \vdash f(e_1, \dots, e_n) : \tau}$$
(C0 Application)

$$\frac{(\tau_1,\ldots,\tau_n)\to\tau\qquad\Gamma;\Delta_i\vdash e_i:\tau_i\quad (\forall i)}{\Gamma;\Delta_1,\ldots,\Delta_n\vdash f(e_1,\ldots,e_n):\tau} \ (\text{C0 Application})$$

$$\frac{\left(\tau_{1},\ldots,\tau_{n}\right)\to\tau\qquad\Gamma;\Delta_{i}\vdash e_{i}:\tau_{i}\quad\left(\forall i\right)}{\Gamma;\Delta_{1},\ldots,\Delta_{n}\vdash f(e_{1},\ldots,e_{n}):\tau}\left(\text{C0 Application}\right)$$

```
int* foo(int* a, int* b) {
  free(a); return b;
}

int main() {
  int* x = alloc(int);
  int* y = foo(x, x); // now a type error!
  free(y);
  return 0;
}
```

In general, pointer equality won't make sense in our language, since all pointers should be distinct.

However, in C, we need a way to check if pointers are NULL! Introducing:

```
1 int* create() /* ... */
 int main() {
   int* x = create();
   if (x is NULL) {
   return 0;
   } else {
     int y = *x; // still have x here!
     return y;
10
```

$$\overline{\Gamma; ? \vdash \mathsf{NULL} : \tau^*}$$
 (Null)

$$\overline{\Gamma; \cdot \vdash \mathbf{NULL} : \tau^*}$$
 (Null)

$$\overline{\Gamma; \cdot \vdash \mathsf{NULL} : \tau^*} \ (\mathrm{Null})$$

$$\frac{\Gamma; ? \vdash e_1 : \tau_2 \qquad \Gamma; ? \vdash e_2 : \tau_2}{\Gamma; \Delta, x : \tau_1^* \vdash \mathsf{ifnull}(x; e_1; e_2)}$$
 (IFNULL)

$$\begin{split} & \frac{\Gamma; \cdot \vdash \mathsf{NULL} : \tau^*}{\Gamma; \cdot \vdash \mathsf{NULL} : \tau^*} \text{ (Null)} \\ & \frac{\Gamma; \Delta \vdash e_1 : \tau_2 \qquad \Gamma; ? \vdash e_2 : \tau_2}{\Gamma; \Delta, x : \tau_1^* \vdash \mathsf{ifnull}(x; e_1; e_2)} \text{ (IfNull)} \end{split}$$

$$\begin{split} \overline{\Gamma; \cdot \vdash \mathsf{NULL} : \tau^*} & \stackrel{(\mathrm{NULL})}{=} \\ \frac{\Gamma; \Delta \vdash e_1 : \tau_2 \qquad \Gamma; \Delta, x : \tau_1^* \vdash e_2 : \tau_2}{\Gamma; \Delta, x : \tau_1^* \vdash \mathsf{ifnull}(x; e_1; e_2)} & \text{(IfNull)} \end{split}$$

Resource Tracking: Struct Introduction

Just like standard C0, we can allocate structs:

```
1 struct list {
  int head;
   struct list* tail;
 struct list* nil() {
   return NULL;
struct list* cons(int x, struct list* xs) {
   struct list* node = alloc(struct list);
11
12
 node - > head = x;
 node->tail = xs;
13
   return node;
14
```

Resource Tracking: Struct Elimination

Problem

We can't eliminate structs like we used to. How will we know that each field is used exactly once?

Resource Tracking: Struct Elimination

Problem

We can't eliminate structs like we used to. How will we know that each field is used exactly once?

Structs are just like products - so, pattern match!

Resource Tracking: Struct Elimination

Problem

We can't eliminate structs like we used to. How will we know that each field is used exactly once?

Structs are just like products - so, pattern match!

```
1 struct list {
  int head;
   struct list* tail;
 int list_sum(struct list* 1) {
   if (1 is NULL)
     return 0;
   let { head = x; tail = xs; } = 1; // new syntax
10
   return x + list_sum(xs);
11
```

Live Coding

Things We Talked About

Things We Talked About

• Linearity as a way of representing state

Things We Talked About

- Linearity as a way of representing state
- Linear propositions in terms of resources

Things We Talked About

- Linearity as a way of representing state
- Linear propositions in terms of resources
- A practical example of linear logic for memory safety

Things We Talked About

- Linearity as a way of representing state
- Linear propositions in terms of resources
- A practical example of linear logic for memory safety

Things We Didn't Cover

Things We Talked About

- Linearity as a way of representing state
- Linear propositions in terms of resources
- A practical example of linear logic for memory safety

Things We Didn't Cover

- Linear logic is actually all about processes and messages
 - Concurrency!

Things We Talked About

- Linearity as a way of representing state
- Linear propositions in terms of resources
- A practical example of linear logic for memory safety

Things We Didn't Cover

- Linear logic is actually all about processes and messages
 - Concurrency!
- Resource tracking (identify the cost of different programs)
- Rust