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What We'll Talk About

@ A style of logic which treats variables differently than “standard” logic
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What We'll Talk About

@ A style of logic which treats variables differently than “standard” logic
@ How to make malloc and free safe

@ What it looks like to code in a language with resource-aware types
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Malloc is Scary...

Consider the following C code:

int main () {
char *str;

N

3 str = (char *) malloc (13);

4 strcpy(str, "hypefortypes");
5 free(str);

6 return (0) ;

71+

In C, we have to make sure we allocate and deallocate every memory cell
exactly once.
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Malloc is Scary...

Consider the following C code:

GA W N R

7|}

int main () {

char *str;

str = (char *) malloc (13);

strcpy(str,
free(str);
return (0) ;

"hypefortypes");

In C, we have to make sure we allocate and deallocate every memory cell
exactly once.

Question

Is there a way to make our types guarantee correctness?
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The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.
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Big Idea J

Proofs should no longer be persistent, but rather ephemeral.
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The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.

Big Idea J

Proofs should no longer be persistent, but rather ephemeral.

Persistence is due to implicit structural rules: weakening and contraction.
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Weakening

1lint main() {

2 int *x = (int *) malloc(sizeof (int));
3 *x = 3;

4 return O;

N

[} = =
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Weakening

-

int main() {
int *x = (int *) malloc(sizeof (int));
*x = 3;
return O;

}

o A W N

Weakening: we can “drop” assumptions

Nle: T

— (WEAK
F,X:T'I—e:T( )
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Contraction

void f(int =*x) {
free(x);

-

3

int main() {
int *x = (int *) malloc(sizeof (int));
*x = 3;
f(x);
f(x);
10 return 0;

11| }

© 0 N o O s~ W N
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10
11

Contraction

void f(int =*x) {

3

free(x);

int main() {

}

int *x = (int *) malloc(sizeof (int));
*x = 3;

f(x);

f(x);

return 0;

Contraction: we can “duplicate” assumptions

Moxi:T,x:THe:T

CNTR
Cox 7k [x,x/x1, xo]e : 7/ ( )
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Introduction to Linear Logic

In linear logic, we have neither weakening nor contraction.
@ Requirement that we use each piece of data exactly once - no
duplication, no dropping
@ Comes with an inherent idea of “resources” that are used up

@ Allows us to write safe, stateful (imperative!) programs
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The Linear Rules

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems



|dentity

Constructive Logic

=] & = E DA
Hype for Types Linear Logic and Linear Type Systems



|dentity

Constructive Logic Linear Logic
x:Ael
(HyP) —  (Hvyp)
Ne=x:A x:AFx: A
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|dentity

Constructive Logic Linear Logic
x:Ael
(HyP) (HyP)
Ne=x:A x:AFx: A
Intuition
“Given A and nothing else, we can use up A” J
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Conjunction

Constructive Logic

rl—e]_ZAl I'I—e2:A2

AT)
M+ (el,e2> 2A1/\A2
lFe: A1 NA lFe: AT NA
L ARR LR SRR p)
[+ fst(e) : Ay [+ snd(e) : A
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L ARR LR SRR p)
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Linear Logic
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Conjunction

Constructive Logic

rl—e]_ZAl r|—62:A2

AT)
M+ (el,e2> 2A1/\A2
lFe: A1 NA lFe: AT NA
L ARR LR SRR p)
[+ fst(e) : Ay [+ snd(e) : A

Linear Logic

A1|—€12A1 A2|—622A2
A1, Ax k- (e1,e) : AL ® A

(®I)
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Conjunction

Constructive Logic

rl—e]_ZAl r|—62:A2

AT)
M+ (el,e2> 2A1/\A2
lFe: A1 NA lFe: AT NA
L ARR LR SRR p)
[+ fst(e) : Ay [+ snd(e) : A

Linear Logic

A1|—€12A1 A2|—622A2
A1, Ax k- (e1,e) : AL ® A

(®I)

AFe A ® A A/,XliAl,XglAzl—ezic
AN Flet (xi,x)=e ine:C

(RE)
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Disjunction
Constructive Logic

Ne: Ar e A

(Vh) - (Vk)
N Lefte: AV A '+ Right e : A; V A

Fe:A VA MNx1:Ai ke : B MNx:AFe:B
ltcaseeof xy = e | xo = e : B

(VE)
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Disjunction
Constructive Logic

Ne: Ar e A

(Vh) - (Vk)
N Lefte: AV A '+ Right e : A; V A

Fe:A VA MNx1:Ai ke : B MNx:AFe:B
ltcaseeof xy = e | xo = e : B

(VE)

Linear Logic

AFe: A
AFLefte: A D A,

(@I1)
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Disjunction

Constructive Logic

Ne: Ar e A
(Vh) : (Vhk)
N Lefte: AV A '+ Right e : A; V A
Fe:A VA MNx1:Ai ke : B I',Xz:Azl—ezzB(vE)
ltcaseeof xy = e | xo = e : B
Linear Logic
Ale: A Ale: A
(e11) : (e12)
Al Lefte: A; ® As AF Right e: A1 & Ay
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Disjunction

Constructive Logic

Ne: A [He: A
(Vh) : (Vk)
NFLeft e: Ay V As I Right e: A; V Ay
Fe:A VA MNx1:AkFe B r,X2:A2|—62:B(vE)
ltcaseeof xy = e | xo = e : B
Linear Logic
Ale: A Ale: A
(@I1) . (@12)
Al Lefte: A; ® As AF Right e: A1 & Ay

AFe: A1 ® A A xi:AllFe B AN xo:AFe: B

A/A' Fcaseeof x; = e | xo= e : B

Hype for Types Linear Logic and Linear Type Systems

September 28, 2021

(PE)

12/22



Towards a Linear C°
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What are resources in C0?

@ int? string? intx?
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What are resources in C0?7

@ int? string? intx?
@ We'll just treat pointers as linear

@ Use a reusable context, [, to represent reusable variables and a
linear context, A\, for linear variables
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What are resources in C0?7

@ int? string? intx?
@ We'll just treat pointers as linear

@ Use a reusable context, [, to represent reusable variables and a
linear context, A\, for linear variables

(VAR-REUSABLE)
Mx:7-Fx:71

Hype for Types Linear Logic and Linear Type Systems September 28, 2021 14 /22



What are resources in C0?7

@ int? string? intx?
@ We'll just treat pointers as linear

@ Use a reusable context, [, to represent reusable variables and a
linear context, A\, for linear variables

(VAR-REUSABLE) ———— (VAR-LINEAR)
Mx:7-Fx:71 Mx:7FHx:7
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Resource Splitting: Operators

In CO, we have built-in operators (e.g., +, -)
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Resource Splitting: Operators

In CO, we have built-in operators (e.g., +, -).

+: (int,int) — int - : (int,int) — int == (int,int) — bool
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Resource Splitting: Operators

In CO, we have built-in operators (e.g., +, -).

+: (int,int) — int - : (int,int) — int == (int,int) — bool

@Z(T]_,TQ)-)T lFe:m e :m
lFeg@e:T

(SML BINOP)
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Resource Splitting: Operators

In CO, we have built-in operators (e.g., +, -).

+: (int,int) — int - : (int,int) — int == (int,int) — bool

@Z(T]_,TQ)-)T e :m e :m
lFeg@e:T

(SML BINOP)

©:(r,m) =T ATk e 7 A e m
r;Al,Agl—el®6227'

(C0 BiNOP)
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Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).
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Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(T1,...,Th) = T H2ke:m (Vi)
7 f(er,....en): 7

(CO APPLICATION)
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Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(Tl,...,T,,)—>T r;A,'l—e,'ZT,' (\V/I)
A, ., Ay f(er,....en): T
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Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(Tl,...,Tn)—)T r;A,'l—e,'ZT,' (VI)
A, ., Ay f(er,....en): T

(CO APPLICATION)

i{int* foo(int* a, int* b) {

2 free(a); return b;

3|}

4

s|int main() {

6 int* x = alloc(int);

7 int* y = foo(x, x); // now a type error!
8 free(y);

9 return O;

10| +
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Resource Splitting: Null Checks

In general, pointer equality won't make sense in our language, since all

pointers should be distinct.
However, in C, we need a way to check if pointers are NULL! Introducing:

int* create() /* ... x/

int

main () {

int* x = create();

if (x is NULL) {

}

return O;

else {

int y = *x; // still have x here!
return y;
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Resource Splitting: Null Checks

(NurL)
7 NULL: 7*
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Resource Splitting: Null Checks

(NuLL)
M-+ NULL: 7"
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Resource Splitting: Null Checks

(NuLL)
M-+ NULL: 7"

7He :m 7FHe:mn
[ A x 7 Fifnull(x; er; e)

(IFNULL)
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Resource Splitting: Null Checks

(NuLL)
M-+ NULL: 7"

AFe :m A x: 1T e m
[ A x 7 Fifnull(x; er; e)

(IFNULL)
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Resource Tracking: Struct Introduction

Just like standard CO, we can allocate structs:

N

struct list {

2 int head;

3 struct list* tail;

4l

5

6| struct list* nil () {

7 return NULL;

8|}

9

10| struct list* cons(int x, struct list* xs) {
11 struct list* node = alloc(struct list);

12 node->head = x;

13 node->tail = xs;

14 return node;

15| }

Y



Resource Tracking: Struct Elimination
Problem

We can't eliminate structs like we used to. How will we know that each
field is used exactly once?
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Resource Tracking: Struct Elimination

Problem

We can't eliminate structs like we used to. How will we know that each
field is used exactly once?

Structs are just like products - so, pattern match!

struct list {
int head;
struct list* tail;

T

int list_sum(struct listx 1) {
if (1 is NULL)
return O;

10 let { head = x; tail = xs; } = 1; // new syntax
11 return x + list_sum(xs);

12| }
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Live Coding
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Things We Talked About
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Conclusion

Things We Talked About
@ Linearity as a way of representing state
@ Linear propositions in terms of resources

@ A practical example of linear logic for memory safety

Things We Didn’t Cover
@ Linear logic is actually all about processes and messages
» Concurrency!

@ Resource tracking (identify the cost of different programs)
@ Rust
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