
Category Theory: Foundations

Hype for Types

1 Categories

What is a category?

Definition 1.1 (Category). A category C consists of:

• A collection C0 (or ob(C)) of “objects”.

• A collection C1 (or arr(C)) of “arrows”/“morphisms”.

such that:

• Every arrow u ∈ C1 has a “domain”/“source” object and a “codomain”/“target” object. If u has
source X and target Y , we write f : X → Y .

• For every object X ∈ C0, there exists an identity arrow idX : X → X.

• For arrows f : X → Y and g : Y → Z, there exists an arrow X → Z which we denote g ◦ f .

• For all f : X → Y , f ◦ idX = f = idY ◦ f .

• For all f : W → X, g : X → Y, h : Y → Z, (h ◦ g) ◦ f = h ◦ (g ◦ f).

Example 1.1 (Preorder Categories). For any set S with a preorder ≤, we can consider a category where
the objects are elements of S and there is a single morphism ?x,y : x→ y if x ≤ y, for x, y ∈ S.

• Notice that every object x has an identity arrow idx = ?x,x : x→ x, by reflexivity.

• Also, if ?x,y : x → y (i.e., x ≤ y) and ?y,z : y → z (i.e., y ≤ z), then we have an arrow ?x,z : x → z
(i.e., x ≤ z) by transitivity.

There are many concrete examples:

• Consider N with the standard ordering; call this category (N,≤).

0 1 2 3

We omit identity arrows for brevity.

• Similarly, consider R≥0 (the non-negative real numbers) with the standard ordering; call this category
(R≥0,≤).

• Consider N with the ordering a ≤ b iff a is a multiple of b; call this category Multiple. This is reflexive
(every a is a multiple of itself) and transitive (if a is a multiple of b and b is a multiple of c, then a is

1



a multiple of c). Notice that every number is a multiple of 1 and 0 is a multiple of every number.

0

4

6 5

3

2 1

Example 1.2 (The Category Set). The category Set has objects being sets and arrows being functions.
Identity arrows are the identity functions, and composition is function composition.

Example 1.3 (The Category SML). The category SML has objects being SML types and arrows being
(total) functions. Identity arrows are the identity functions fn (x : t) => x, and composition is function
composition via o.

In the following diagram, many objects arrows are omitted - there are infinitely many!

void

int * string int

int list

string

unit

Example 1.4 (The Category CLogic). The category CLogic has objects being propositions in constructive
logic and arrows being present if an implication is true.

Definition 1.2 (Isomorphism). Let C be a category.

If X1 and X2 are objects and f1 : X1 → X2 and f2 : X2 → X1 are arrows with f2 ◦ f1 = idX1
and

f1 ◦ f2 = idX2 , then we say that X1 and X2 are isomorphic objects.

2 Terminal and Initial Objects

Some categories have objects which are particularly “special” - we’ll consider two special kinds of objects.

2.1 Terminal Object

Definition 2.1 (Terminal Object). Let C be a category. A terminal object in C is an object T which satisfies
the following property:

2



for all objects T ′,
there exists a unique arrow h : T ′ → T .

Pictorally:

T ′

T

∃!h

Theorem 2.1 (Uniqueness of Terminal Object). Let C be a category. If T and T ′ are both terminal objects,
then T and T ′ are isomorphic.

So, it is reasonable to talk about the terminal object, since it is unique up to isomorphism.

Example 2.1. Recall the category (N,≤) from Example 1.1. There is no terminal object. Suppose n were
the terminal object: then, it must be the case that for all m, m ≤ n, but there is no such number n.

Example 2.2. Recall the category Multiple from Example 1.1. Here, 1 is the terminal object, since for all
other objects n, there exists an arrow n→ 1 (since every number is a multiple of 1). Since there is at most
one arrow between any two objects in Multiple, this arrow is unique.

Example 2.3. Recall the category Set from Example 1.2. Here, {42} is the terminal object, since for all
other objects S, there exists a unique arrow S → {42}, the function mapping all inputs to 42.

There are other terminal objects, like {43}, {a}, and {{}}, but these are isomorphic by Theorem 2.1.

Example 2.4. Recall the category SML from Example 1.3. Here, unit is the terminal object, since for all
other objects t, there exists a unique arrow t -> unit, the function mapping all inputs to ().

There are other terminal objects, like unit * unit, void + unit, and datatype foo = Foo, but these are
isomorphic by Theorem 2.1.

Example 2.5. Recall the category CLogic from Example 1.4. Here, > (the always-true proposition) is the
terminal object, since for all other objects ϕ, there exists a unique arrow ϕ =⇒ >, since every proposition
ϕ implies trivial truth.

Remark 2.6. Notice that terminal objects store only “trivial” data. Thus, we often call the terminal object
of a category 1 or 1C.

2.2 Initial Object

Definition 2.2 (Initial Object). Let C be a category. A initial object in C is an object I which satisfies the
following property:

for all objects I ′,
there exists a unique arrow h : I → I ′.

Pictorally:

I ′

I

∃!h

Theorem 2.2 (Uniqueness of Initial Object). Let C be a category. If I and I ′ are both initial objects, then
I and I ′ are isomorphic.

3



So, it is reasonable to talk about the initial object, since it is unique up to isomorphism.

Example 2.7. Recall the category (N,≤) from Example 1.1. The initial object is 0, since for all n, we have
an arrow 0→ n since 0 ≤ n. Since there is at most one arrow between two numbers, the arrow is unique.

Example 2.8. Recall the category Multiple from Example 1.1. The initial object is 0, since for all n, we
have an arrow 0→ n since 0 is a multiple of n. Since there is at most one arrow between two numbers, the
arrow is unique.

Example 2.9. Recall the category Set from Example 1.2. Here, ∅ is the initial object, since for all other
objects S, there exists a unique arrow ∅→ S.1

Example 2.10. Recall the category SML from Example 1.3. Here, void is the initial object, since for all
other objects t, there exists a unique arrow void -> t.

Example 2.11. Recall the category CLogic from Example 1.4. Here, ⊥ (the always-false proposition) is
the initial object, since for all other objects ϕ, there exists a unique arrow ⊥ =⇒ ϕ, since falsity implies
any proposition ϕ.

3 Products and Coproducts (Sums)

Now, let’s consider how objects interact.

3.1 Product

Definition 3.1 (Product). Let C be a category, and let A1, A2 be objects in C. The product of A1 and A2

is some object P with has arrows p1 : P → A1, p2 : P → A2 which satisfy the following property:

for all objects P ′ with arrows p′1 : P ′ → A1, p′2 : P ′ → A2,
there exists a unique arrow h : P ′ → P such that p′1 = p1 ◦ h and p′2 = p2 ◦ h.

Pictorally:

P ′

A1 P A2p1 p2

p′
1 p′

2∃!h

Theorem 3.1 (Uniqueness of Products). Let C be a category, and let A1, A2 be objects in C. If P and P ′

are both products of A1 and A2, then P and P ′ are isomorphic.

So, it is reasonable to talk about the product of A1 and A2.

Example 3.1. Recall the category (N,≤) from Example 1.1, and consider objects n1, n2. The product of
n1 and n2 in this category would be some object m such that m ≤ n1 and m ≤ n2, with:

for all m′ with m′ ≤ n1 and m′ ≤ n2, then m′ ≤ m

In other words, m must be the largest number which is less than or equal to n1 and n2. So, m must be
min(n1, n2).

Example 3.2. Recall the category Multiple from Example 1.1, and consider objects n1, n2. The product
of n1 and n2 in this category would be some object m such that m is a multiple of n1 and n2, with:

for all m′ with m′ being a multiple of n1 and n2, m′ is a multiple of m

1This may feel non-obvious! For example, let S = N; then, wouldn’t f = x 7→ 42 and g = x 7→ 43 be different arrows? In
fact, they are the same function, since “for all x ∈ ∅, f(x) = g(x)” is true (vacuously; there are no such x ∈ ∅).

4



In other words, m must be the smallest number which is a multiple of n1 and n2. So, m must be lcm(n1, n2).

Example 3.3. Recall the category Set from Example 1.2, and consider objects A,B. The product of A
and B in this category would be some object P with arrows pA : P → A and pB : P → B, with:

for all P ′ with arrows p′A : P ′ → A and p′B : P ′ → B, there exists a unique arrow h : P ′ → P
such that p′A = pA ◦ h and p′B = pB ◦ h.

Consider P = A×B, the Cartesian product of our sets A and B, with pA = (a, b) 7→ a and pB = (a, b) 7→ b.
Then, given an arbitrary P ′, p′A, p

′
B , the unique arrow h : P ′ → P is x 7→ (p′A(x), p′B(x)).

Example 3.4. Recall the category SML from Example 1.3, and consider types a, b. The product of a and
b in this category would be some object p with arrows pa : p -> a and pb : p -> b, with:

for all p’ with arrows pa’ : p’ -> a and pb’ : p’ -> b, there exists a unique arrow h :

p’ -> p such that pa’ = pa o h and pb’ = pb o h.

Consider p = a * b, the tuple/product type of a and b, with pa = fst = fn (a, b) => a and pb = snd

= fn (a, b) => b. Then, given an arbitrary p’, pa’, pb’, the unique arrow h : p’ -> p is fn x =>

(pa’ x, pb’ x).

Remark 3.5. Notice that not only is int * string a product of int and string, but in fact so are string
* int, string * int * unit, and (string * unit) + void. This is okay, though, since products are
unique up to isomorphisms, as described in Theorem 3.1.

Example 3.6. Recall the category CLogic from Example 1.4. We claim that the product of two propositions
ϕ1 and ϕ2 will be ϕ1 ∧ ϕ2; the justification is left as an exercise to the reader.

3.2 Coproducts (Sums)

We can dualize the definition of products to get coproducts, or sums.

Definition 3.2 (Coproduct). Let C be a category, and let A1, A2 be objects in C. The coproduct (or sum)
of A1 and A2 is some object S with has arrows i1 : A1 → S, i2 : A2 → S which satisfy the following property:

for all objects S′ with arrows i′1 : A1 → S, i′2 : A2 → S,
there exists a unique arrow h : S → S′ such that i′1 = i1 ◦ h and i′2 = i2 ◦ h.

Pictorally:

S′

A1 S A2

∃!h

i2

i1

i′1 i′2

Theorem 3.2 (Uniqueness of Coproducts). Let C be a category, and let A1, A2 be objects in C. If S and
S′ are both coproducts of A1 and A2, then S and S′ are isomorphic.

So, it is reasonable to talk about the coproduct of A1 and A2.

Example 3.7. Recall the category (N,≤) from Example 1.1, and consider objects n1, n2. The coproduct of
n1 and n2 in this category would be some object m such that n1 ≤ m and n2 ≤ m, with:

for all m′ with n1 ≤ m′ and n2 ≤ m′, then m ≤ m′

In other words, m must be the smallest number which is greater than or equal to n1 and n2. So, m must be
max(n1, n2).

5



Example 3.8. Recall the category Multiple from Example 1.1, and consider objects n1, n2. The coproduct
of n1 and n2 in this category would be some object m such that n1 and n2 are multiples of m, with:

for all m′ with n1 and n2 being multiples of m′, m is a multiple of m′

In other words, m must be the largest number which n1 and n2 are both multiples of. So, m must be
gcd(n1, n2).

Example 3.9. Recall the category Set from Example 1.2, and consider objects A,B. We claim that A]B,
the disjoint union of A and B, is the coproduct of A and B.2 The justification is left as an exercise to the
reader.

Example 3.10. Recall the category SML from Example 1.3, and consider types a, b. The coproduct of a
and b in this category would be some object s with arrows ia : a -> s and ib : b -> s, with:

for all s’ with arrows ia’ : a -> s’ and ib’ : b -> s’, there exists a unique arrow h :

s -> s’ such that ia’ = ia o h and ib’ = ib o h.

Consider s = a + b = (a, b) either, the sum type of a and b, with ia = Left and ib = Right. Then,
given an arbitrary s’, ia’, ib’, the unique arrow h : s -> s’ is fn Left a => ia’ a | Right b =>

ib’ b.

Example 3.11. Recall the category CLogic from Example 1.4. We claim that the coproduct of two
propositions ϕ1 and ϕ2 will be ϕ1 ∨ ϕ2; the justification is left as an exercise to the reader.

4 Functors

We’ve considered some examples of categories and considered interesting examples of objects in a category.
However, we may consider what it would mean to move between categories. For this purpose, we’ll use
functors.

Definition 4.1 (Functor). A functor F : C→ D consists of:

• a map F0 : C0 → D0

• a map F1 : C1 → D1

such that:

• the source and target of arrows are preserved; if f : X → Y is an arrow in C, then F1(f) : F0(X) →
F0(Y ) in D.

• for every object X ∈ C0, F1(idX) = idF0(X)

• for arrows f : X → Y and g : Y → Z, F1(g ◦ f) = F1(g) ◦ F1(f)

Notice that the conditions enforce that F0 and F1 preserve the structure of a category, as given in Defini-
tion 1.1.

Pictorally, using an image from Bartosz Milewski:

2Consider: which condition would A ∪B violate?

6

https://bartoszmilewski.com/2015/01/20/functors/


Note that the image overloads F to refer to both F0 and F1.

Example 4.1 (Doubling Functor on N). We can define a functor F : (N,≤)→ (N,≤) as follows:

F0(x) = 2x

F1(?x,y) = ?2x,2y

The map F1 is well defined because if x ≤ y, then 2x ≤ 2y.

Since there is at most one arrow per pair of objects (namely, ?), the functor laws are trivially satisfied.

Example 4.2 (Floor Functor). We can define a functor F : (R≥0,≤)→ (N,≤) as follows:

F0(x) = bx/2c
F1(?x,y) = ?bx/2c,by/2c

The map F1 is well defined because if x ≤ y, then bx/2c ≤ by/2c.

Since there is at most one arrow per pair of objects (namely, ?), the functor laws are trivially satisfied.

Remark 4.3. Any monotone function between posets induces a functor, where “f is monotone” is defined
as “x ≤ y implies f(x) ≤ f(y)”.

Example 4.4 (List Functor). We can define a functor List : SML→ SML as follows:

F0(t) = t list

F1(f) = List.map f

Observe that the functor laws are satisfied:

List.map Fn.id = Fn.id

List.map (g o f) = List.map g o List.map f

Remark 4.5. Many common types form functors: ’a * ’a, ’a option, ’a tree, ’a shrub, ’a stream,
int -> ’a, and so on.

Remark 4.6. Not all polymorphic types form functors: consider ’a t = ’a -> int, and try to write map

: (’a -> ’b) -> ’a t -> ’b t.

4.1 Connection to SML

Restricting our attention to category SML, we can define a signature which describes functors SML →
SML. So as not to confuse ourself with the word functor used in the SML module system, we use the word
MAPPABLE.

7



signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

(* Invariants (functor laws):

map id = id

map (g o f) = map g o map f

*)

end

Of course, we cannot enforce the functor laws via SML types, so we include them as commented “invariants”.

Defining a functor now involves implementing a structure ascribing to MAPPABLE:

structure ListMappable : MAPPABLE =

struct

type ’a t = ’a list

val map = List.map

end

In fact, many category theoretic ideas will be useful abstractions in functional programming!

8


	Categories
	Terminal and Initial Objects
	Terminal Object
	Initial Object

	Products and Coproducts (Sums)
	Product
	Coproducts (Sums)

	Functors
	Connection to SML


