
Polymorphism: What’s the deal with ’a?

Hype for Types

November 5, 2021

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 1 / 20



Polymorphism

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 2 / 20



Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus

Γ, x : τ ` e : τ ′

Γ ` λ(x : τ)e : τ → τ ′

Notice, ⇑ we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types).
id = λ(x : Nat)x
But this only works on Nats!
id true (* type error! *)
id2 = λ(x : Bool)x
This seems really annoying >: (

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 3 / 20



Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus

Γ, x : τ ` e : τ ′

Γ ` λ(x : τ)e : τ → τ ′

Notice, ⇑ we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types).

id = λ(x : Nat)x
But this only works on Nats!
id true (* type error! *)
id2 = λ(x : Bool)x
This seems really annoying >: (

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 3 / 20



Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus

Γ, x : τ ` e : τ ′

Γ ` λ(x : τ)e : τ → τ ′

Notice, ⇑ we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types).
id = λ(x : Nat)x
But this only works on Nats!
id true (* type error! *)

id2 = λ(x : Bool)x
This seems really annoying >: (

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 3 / 20



Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus

Γ, x : τ ` e : τ ′

Γ ` λ(x : τ)e : τ → τ ′

Notice, ⇑ we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types).
id = λ(x : Nat)x
But this only works on Nats!
id true (* type error! *)
id2 = λ(x : Bool)x
This seems really annoying >: (

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 3 / 20



What does SML do?

val id = fn (x : ’a) => x

val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

But what is ’a? Is it a type?
If id 1 type checks then 1 : ’a???

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 4 / 20



What does SML do?

val id = fn (x : ’a) => x

val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

But what is ’a? Is it a type?

If id 1 type checks then 1 : ’a???

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 4 / 20



What does SML do?

val id = fn (x : ’a) => x

val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

But what is ’a? Is it a type?
If id 1 type checks then 1 : ’a???

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 4 / 20



Polymorphism

Intuitively, we’d like to interpret ’a -> ’a as ”for all ’a, ’a -> ’a”
The ”for all” is implicit.
This is great for programming, but confusing to formalize.
Let’s make it explicit!
’a -> ’a =⇒ ∀a.a→ a
The ticks are no longer needed, as we’ve explicitly bound a as a type
variable.

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 5 / 20



Polymorphism

How do we construct a value of type ∀a.a→ a in our new formalism?
We might suggest λ(x : a)x , but once again the type variable is being
bound implicitly.

Let’s bind it explicitly !
Λ(a : Type)λ(x : a)x : ∀a.a→ a
How do we use this?
(Λ(a : Type)λ(x : a)x)[Nat] =⇒ λ(x : Nat)x

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 6 / 20



Polymorphism

How do we construct a value of type ∀a.a→ a in our new formalism?
We might suggest λ(x : a)x , but once again the type variable is being
bound implicitly.
Let’s bind it explicitly !
Λ(a : Type)λ(x : a)x : ∀a.a→ a

How do we use this?
(Λ(a : Type)λ(x : a)x)[Nat] =⇒ λ(x : Nat)x

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 6 / 20



Polymorphism

How do we construct a value of type ∀a.a→ a in our new formalism?
We might suggest λ(x : a)x , but once again the type variable is being
bound implicitly.
Let’s bind it explicitly !
Λ(a : Type)λ(x : a)x : ∀a.a→ a
How do we use this?

(Λ(a : Type)λ(x : a)x)[Nat] =⇒ λ(x : Nat)x

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 6 / 20



Polymorphism

How do we construct a value of type ∀a.a→ a in our new formalism?
We might suggest λ(x : a)x , but once again the type variable is being
bound implicitly.
Let’s bind it explicitly !
Λ(a : Type)λ(x : a)x : ∀a.a→ a
How do we use this?
(Λ(a : Type)λ(x : a)x)[Nat] =⇒ λ(x : Nat)x

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 6 / 20



System F

The polymorphic lambda calculus we’ve developed is called System F.
Let’s write a grammar!

e ::= x term variable
| λ(x : τ)e term abstraction
| Λ(t : Type)e type abstraction
| e1e2 term application
| e1[τ ] type application

τ ::= t type variable
| τ1 → τ2 function type
| ∀t.τ polymorphic type

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 7 / 20



System F

The polymorphic lambda calculus we’ve developed is called System F.
Let’s write a grammar!

e ::= x term variable
| λ(x : τ)e term abstraction
| Λ(t : Type)e type abstraction
| e1e2 term application
| e1[τ ] type application

τ ::= t type variable
| τ1 → τ2 function type
| ∀t.τ polymorphic type

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 7 / 20



System F
And some inference rules!

t ∈ ∆
∆ ` t type

∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type

∆, t ` τ type

∆ ` ∀t.τ type

x : τ ∈ Γ
∆; Γ ` x : τ

∆; Γ, x : τ ` e : τ ′ ∆ ` τ type

∆; Γ ` λ(x : τ)e : τ → τ ′

∆, t; Γ ` e : τ

∆; Γ ` Λ(t : Type)e : ∀t.τ
∆; Γ ` e1 : τ → τ ′ ∆; Γ ` e2 : τ

∆; Γ ` e1e2 : τ ′

∆; Γ ` e : ∀t.τ ∆ ` τ ′ type
∆; Γ ` e[τ ′] : τ [τ ′/t]

Question

Do we need anything else? What about product types? Sum types?

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 8 / 20



System F
And some inference rules!

t ∈ ∆
∆ ` t type

∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type

∆, t ` τ type

∆ ` ∀t.τ type

x : τ ∈ Γ
∆; Γ ` x : τ

∆; Γ, x : τ ` e : τ ′ ∆ ` τ type

∆; Γ ` λ(x : τ)e : τ → τ ′

∆, t; Γ ` e : τ

∆; Γ ` Λ(t : Type)e : ∀t.τ
∆; Γ ` e1 : τ → τ ′ ∆; Γ ` e2 : τ

∆; Γ ` e1e2 : τ ′

∆; Γ ` e : ∀t.τ ∆ ` τ ′ type
∆; Γ ` e[τ ′] : τ [τ ′/t]

Question

Do we need anything else? What about product types? Sum types?

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 8 / 20



System F
And some inference rules!

t ∈ ∆
∆ ` t type

∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type

∆, t ` τ type

∆ ` ∀t.τ type

x : τ ∈ Γ
∆; Γ ` x : τ

∆; Γ, x : τ ` e : τ ′ ∆ ` τ type

∆; Γ ` λ(x : τ)e : τ → τ ′

∆, t; Γ ` e : τ

∆; Γ ` Λ(t : Type)e : ∀t.τ
∆; Γ ` e1 : τ → τ ′ ∆; Γ ` e2 : τ

∆; Γ ` e1e2 : τ ′

∆; Γ ` e : ∀t.τ ∆ ` τ ′ type
∆; Γ ` e[τ ′] : τ [τ ′/t]

Question

Do we need anything else? What about product types? Sum types?

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 8 / 20



System F
And some inference rules!

t ∈ ∆
∆ ` t type

∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type

∆, t ` τ type

∆ ` ∀t.τ type

x : τ ∈ Γ
∆; Γ ` x : τ

∆; Γ, x : τ ` e : τ ′ ∆ ` τ type

∆; Γ ` λ(x : τ)e : τ → τ ′

∆, t; Γ ` e : τ

∆; Γ ` Λ(t : Type)e : ∀t.τ
∆; Γ ` e1 : τ → τ ′ ∆; Γ ` e2 : τ

∆; Γ ` e1e2 : τ ′

∆; Γ ` e : ∀t.τ ∆ ` τ ′ type
∆; Γ ` e[τ ′] : τ [τ ′/t]

Question

Do we need anything else? What about product types? Sum types?

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 8 / 20



Some Fing Functions

swap : ∀a b c .(a→ b → c)→ (b → a→ c) =

Λ(a b c : Type)λ(f : a→ b → c)λ(x : b)λ(y : a)f y x

compose : ∀a b c.(a→ b)→ (b → c)→ (a→ c) =

Λ(a b c : Type)λ(f : a→ b)λ(g : b → c)λ(x : a)g(f x)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 9 / 20



Some Fing Functions

swap : ∀a b c .(a→ b → c)→ (b → a→ c) =

Λ(a b c : Type)λ(f : a→ b → c)λ(x : b)λ(y : a)f y x

compose : ∀a b c.(a→ b)→ (b → c)→ (a→ c) =

Λ(a b c : Type)λ(f : a→ b)λ(g : b → c)λ(x : a)g(f x)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 9 / 20



Some Fing Functions

swap : ∀a b c .(a→ b → c)→ (b → a→ c) =

Λ(a b c : Type)λ(f : a→ b → c)λ(x : b)λ(y : a)f y x

compose : ∀a b c.(a→ b)→ (b → c)→ (a→ c) =

Λ(a b c : Type)λ(f : a→ b)λ(g : b → c)λ(x : a)g(f x)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 9 / 20



Some Fing Functions

swap : ∀a b c .(a→ b → c)→ (b → a→ c) =

Λ(a b c : Type)λ(f : a→ b → c)λ(x : b)λ(y : a)f y x

compose : ∀a b c.(a→ b)→ (b → c)→ (a→ c) =

Λ(a b c : Type)λ(f : a→ b)λ(g : b → c)λ(x : a)g(f x)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 9 / 20



Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really ∀a.a→ a?

Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions.
Our function here is equivalent to:

hmm = Λ(a : Type)λ(id : a→ a)(id 1, id true)

Which is not the same as:

hmm = λ(id : ∀a.a→ a)(id [int] 1, id [bool ] true)

Why? Because type inference for System F is undecidable!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 10 / 20



Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really ∀a.a→ a?
Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions.
Our function here is equivalent to:

hmm = Λ(a : Type)λ(id : a→ a)(id 1, id true)

Which is not the same as:

hmm = λ(id : ∀a.a→ a)(id [int] 1, id [bool ] true)

Why? Because type inference for System F is undecidable!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 10 / 20



Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really ∀a.a→ a?
Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions.
Our function here is equivalent to:

hmm = Λ(a : Type)λ(id : a→ a)(id 1, id true)

Which is not the same as:

hmm = λ(id : ∀a.a→ a)(id [int] 1, id [bool ] true)

Why? Because type inference for System F is undecidable!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 10 / 20



For all? Exists

If we can express ”for all” as a type, can we express ”there exists” as a
type?

∀t.t → t means ”for any type t, if you give me a t, I’ll give you a t
∃t.t → t means ”there is some specific type t, and if you give me a t, I’ll
give you a t”
Where have you seen the idea of specific, yet unknown type?
Modules!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 11 / 20



For all? Exists

If we can express ”for all” as a type, can we express ”there exists” as a
type?
∀t.t → t means ”for any type t, if you give me a t, I’ll give you a t
∃t.t → t means ”there is some specific type t, and if you give me a t, I’ll
give you a t”

Where have you seen the idea of specific, yet unknown type?
Modules!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 11 / 20



For all? Exists

If we can express ”for all” as a type, can we express ”there exists” as a
type?
∀t.t → t means ”for any type t, if you give me a t, I’ll give you a t
∃t.t → t means ”there is some specific type t, and if you give me a t, I’ll
give you a t”
Where have you seen the idea of specific, yet unknown type?

Modules!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 11 / 20



For all? Exists

If we can express ”for all” as a type, can we express ”there exists” as a
type?
∀t.t → t means ”for any type t, if you give me a t, I’ll give you a t
∃t.t → t means ”there is some specific type t, and if you give me a t, I’ll
give you a t”
Where have you seen the idea of specific, yet unknown type?
Modules!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 11 / 20



Existentialism

signature S =

sig

type t

val x : t

val f : t -> t

end

is basically equivalent to:

∃t.{x : t, f : t → t}

or even more simply:

∃t.t × (t → t)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 12 / 20



Da Rules

∆, t ` τ type

∆ ` ∃t.τ type

∆; Γ ` e : [ρ/t]τ ∆ ` ρ type

∆; Γ ` struct type t = ρ in e : ∃t.τ

∆; Γ ` M : ∃t.τ ∆, t; Γ, x : τ ` e : τ ′ ∆ ` τ ′ type
∆; Γ ` open M as t, x in e : τ ′

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 13 / 20



Practical Uses

Stack =

∃t.{empty : t, push : int → t → t, pop : t → (int × t) option}

EvenStack =

∃t.{empty : t, push : int → int → t → t, pop : t → (int × t) option}

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 14 / 20



Practical Uses

Stack =

∃t.{empty : t, push : int → t → t, pop : t → (int × t) option}

EvenStack =

∃t.{empty : t, push : int → int → t → t, pop : t → (int × t) option}

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 14 / 20



Practical Uses

Stack =

∃t.{empty : t, push : int → t → t, pop : t → (int × t) option}

EvenStack =

∃t.{empty : t, push : int → int → t → t, pop : t → (int × t) option}

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 14 / 20



Practical Uses

ListStack : Stack =

struct type t = int list in

{empty = Nil ,

push = Cons,

pop = λ(s : int list)case s of Nil ⇒ None|Cons(x , xs)⇒ Some(x , xs)}

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 15 / 20



Practical Uses

ListStack : Stack = struct type t = int list in

{empty = Nil ,

push = Cons,

pop = λ(s : int list)case s of Nil ⇒ None|Cons(x , xs)⇒ Some(x , xs)}

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 15 / 20



Practical Uses

mkEvenStack : Stack → EvenStack =

λ(S : Stack)open S as t, s in

struct type t ′ = t in

{empty = s.empty ,

push = λ(x : int)λ(y : int)s.push y ◦ s.push x ,

pop = s.pop}

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 16 / 20



Practical Uses

mkEvenStack : Stack → EvenStack =

λ(S : Stack)open S as t, s in

struct type t ′ = t in

{empty = s.empty ,

push = λ(x : int)λ(y : int)s.push y ◦ s.push x ,

pop = s.pop}

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 16 / 20



Function Types? No: Type Functions

In SML I can write

type ’a f = ’a * ’a

What is f? Does it have a type?

In simply typed lambda calculus, we can write functions from terms to
terms: λ(x : Nat)x
In System F we can write functions from types to terms:
Λ(A : Type)λ(x : A)x
f is a function from a type to a type. f: Type → Type.
In SML we’re limited to Type → Type, but we could go further.
In System Fω, we can write functions like:
λ(F : Type → Type)λ(A : Type)(A× A)→ F A

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 17 / 20



Function Types? No: Type Functions

In SML I can write

type ’a f = ’a * ’a

What is f? Does it have a type?
In simply typed lambda calculus, we can write functions from terms to
terms: λ(x : Nat)x

In System F we can write functions from types to terms:
Λ(A : Type)λ(x : A)x
f is a function from a type to a type. f: Type → Type.
In SML we’re limited to Type → Type, but we could go further.
In System Fω, we can write functions like:
λ(F : Type → Type)λ(A : Type)(A× A)→ F A

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 17 / 20



Function Types? No: Type Functions

In SML I can write

type ’a f = ’a * ’a

What is f? Does it have a type?
In simply typed lambda calculus, we can write functions from terms to
terms: λ(x : Nat)x
In System F we can write functions from types to terms:
Λ(A : Type)λ(x : A)x

f is a function from a type to a type. f: Type → Type.
In SML we’re limited to Type → Type, but we could go further.
In System Fω, we can write functions like:
λ(F : Type → Type)λ(A : Type)(A× A)→ F A

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 17 / 20



Function Types? No: Type Functions

In SML I can write

type ’a f = ’a * ’a

What is f? Does it have a type?
In simply typed lambda calculus, we can write functions from terms to
terms: λ(x : Nat)x
In System F we can write functions from types to terms:
Λ(A : Type)λ(x : A)x
f is a function from a type to a type. f: Type → Type.

In SML we’re limited to Type → Type, but we could go further.
In System Fω, we can write functions like:
λ(F : Type → Type)λ(A : Type)(A× A)→ F A

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 17 / 20



Function Types? No: Type Functions

In SML I can write

type ’a f = ’a * ’a

What is f? Does it have a type?
In simply typed lambda calculus, we can write functions from terms to
terms: λ(x : Nat)x
In System F we can write functions from types to terms:
Λ(A : Type)λ(x : A)x
f is a function from a type to a type. f: Type → Type.
In SML we’re limited to Type → Type, but we could go further.
In System Fω, we can write functions like:
λ(F : Type → Type)λ(A : Type)(A× A)→ F A

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 17 / 20



A Curious Observation

Do Λ and ∀ seem conceptually similar to any language features we’ve
already seen?

Λ functions much like λ, but instead of taking a term, it takes a type.
∀ and → seem related in the same sort of way.

∀t.τ ≡ (t : Type)→ τ Λ(t)e ≡ λ(t : Type)e

Do struct type t = ρ in e and ∃ remind you of anything?
Our module expressions are really just tuples of a type, and a term that
uses that type!

∃t.τ ≡ (t : Type)× τ struct type t = ρ in e ≡ 〈ρ, e〉

This is how we’d express these concepts in a language where we can treat
types like terms!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 18 / 20



A Curious Observation

Do Λ and ∀ seem conceptually similar to any language features we’ve
already seen?
Λ functions much like λ, but instead of taking a term, it takes a type.
∀ and → seem related in the same sort of way.

∀t.τ ≡ (t : Type)→ τ Λ(t)e ≡ λ(t : Type)e

Do struct type t = ρ in e and ∃ remind you of anything?
Our module expressions are really just tuples of a type, and a term that
uses that type!

∃t.τ ≡ (t : Type)× τ struct type t = ρ in e ≡ 〈ρ, e〉

This is how we’d express these concepts in a language where we can treat
types like terms!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 18 / 20



A Curious Observation

Do Λ and ∀ seem conceptually similar to any language features we’ve
already seen?
Λ functions much like λ, but instead of taking a term, it takes a type.
∀ and → seem related in the same sort of way.

∀t.τ ≡ (t : Type)→ τ Λ(t)e ≡ λ(t : Type)e

Do struct type t = ρ in e and ∃ remind you of anything?

Our module expressions are really just tuples of a type, and a term that
uses that type!

∃t.τ ≡ (t : Type)× τ struct type t = ρ in e ≡ 〈ρ, e〉

This is how we’d express these concepts in a language where we can treat
types like terms!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 18 / 20



A Curious Observation

Do Λ and ∀ seem conceptually similar to any language features we’ve
already seen?
Λ functions much like λ, but instead of taking a term, it takes a type.
∀ and → seem related in the same sort of way.

∀t.τ ≡ (t : Type)→ τ Λ(t)e ≡ λ(t : Type)e

Do struct type t = ρ in e and ∃ remind you of anything?
Our module expressions are really just tuples of a type, and a term that
uses that type!

∃t.τ ≡ (t : Type)× τ struct type t = ρ in e ≡ 〈ρ, e〉

This is how we’d express these concepts in a language where we can treat
types like terms!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 18 / 20



A Curious Observation

Do Λ and ∀ seem conceptually similar to any language features we’ve
already seen?
Λ functions much like λ, but instead of taking a term, it takes a type.
∀ and → seem related in the same sort of way.

∀t.τ ≡ (t : Type)→ τ Λ(t)e ≡ λ(t : Type)e

Do struct type t = ρ in e and ∃ remind you of anything?
Our module expressions are really just tuples of a type, and a term that
uses that type!

∃t.τ ≡ (t : Type)× τ struct type t = ρ in e ≡ 〈ρ, e〉

This is how we’d express these concepts in a language where we can treat
types like terms!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 18 / 20



We don’t need no type constructors (except ∀ and →)
Can we encode A× B in System F?

Yes! But How?
What can you do with a value of type A× B?
Well, if we have a function that requires a value of type A and a value of
type B, then we can provide it arguments.

A× B = ∀R.(A→ B → R)→ R

pair : ∀A B.A→ B → ∀R.(A→ B → R)→ R =

Λ(A B)λ(x : A)λ(y : B)Λ(R)λ(f : A→ B → R)f x y

fst : ∀A B.(∀R.(A→ B → R)→ R)→ A =

Λ(A B)λ(p : ∀R.A→ B → R)p[A](λ(x : A)λ(y : B)x)

snd : ∀A B.(∀R.(A→ B → R)→ R)→ B =

Λ(A B)λ(p : ∀R.A→ B → R)p[B](λ(x : A)λ(y : B)y)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 19 / 20



We don’t need no type constructors (except ∀ and →)
Can we encode A× B in System F? Yes! But How?

What can you do with a value of type A× B?
Well, if we have a function that requires a value of type A and a value of
type B, then we can provide it arguments.

A× B = ∀R.(A→ B → R)→ R

pair : ∀A B.A→ B → ∀R.(A→ B → R)→ R =

Λ(A B)λ(x : A)λ(y : B)Λ(R)λ(f : A→ B → R)f x y

fst : ∀A B.(∀R.(A→ B → R)→ R)→ A =

Λ(A B)λ(p : ∀R.A→ B → R)p[A](λ(x : A)λ(y : B)x)

snd : ∀A B.(∀R.(A→ B → R)→ R)→ B =

Λ(A B)λ(p : ∀R.A→ B → R)p[B](λ(x : A)λ(y : B)y)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 19 / 20



We don’t need no type constructors (except ∀ and →)
Can we encode A× B in System F? Yes! But How?
What can you do with a value of type A× B?

Well, if we have a function that requires a value of type A and a value of
type B, then we can provide it arguments.

A× B = ∀R.(A→ B → R)→ R

pair : ∀A B.A→ B → ∀R.(A→ B → R)→ R =

Λ(A B)λ(x : A)λ(y : B)Λ(R)λ(f : A→ B → R)f x y

fst : ∀A B.(∀R.(A→ B → R)→ R)→ A =

Λ(A B)λ(p : ∀R.A→ B → R)p[A](λ(x : A)λ(y : B)x)

snd : ∀A B.(∀R.(A→ B → R)→ R)→ B =

Λ(A B)λ(p : ∀R.A→ B → R)p[B](λ(x : A)λ(y : B)y)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 19 / 20



We don’t need no type constructors (except ∀ and →)
Can we encode A× B in System F? Yes! But How?
What can you do with a value of type A× B?
Well, if we have a function that requires a value of type A and a value of
type B, then we can provide it arguments.

A× B = ∀R.(A→ B → R)→ R

pair : ∀A B.A→ B → ∀R.(A→ B → R)→ R =

Λ(A B)λ(x : A)λ(y : B)Λ(R)λ(f : A→ B → R)f x y

fst : ∀A B.(∀R.(A→ B → R)→ R)→ A =

Λ(A B)λ(p : ∀R.A→ B → R)p[A](λ(x : A)λ(y : B)x)

snd : ∀A B.(∀R.(A→ B → R)→ R)→ B =

Λ(A B)λ(p : ∀R.A→ B → R)p[B](λ(x : A)λ(y : B)y)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 19 / 20



We don’t need no type constructors (except ∀ and →)
Can we encode A× B in System F? Yes! But How?
What can you do with a value of type A× B?
Well, if we have a function that requires a value of type A and a value of
type B, then we can provide it arguments.

A× B = ∀R.(A→ B → R)→ R

pair : ∀A B.A→ B → ∀R.(A→ B → R)→ R =

Λ(A B)λ(x : A)λ(y : B)Λ(R)λ(f : A→ B → R)f x y

fst : ∀A B.(∀R.(A→ B → R)→ R)→ A =

Λ(A B)λ(p : ∀R.A→ B → R)p[A](λ(x : A)λ(y : B)x)

snd : ∀A B.(∀R.(A→ B → R)→ R)→ B =

Λ(A B)λ(p : ∀R.A→ B → R)p[B](λ(x : A)λ(y : B)y)

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 19 / 20



Sum Types?

What can we do with a value of type A + B?

If we can a function that takes an A and a function that takes a B, we can
definitely provide an argument to one of them.

A + B = ∀R.(A→ R)→ (B → R)→ R

left : ∀A B.A→ ∀R.(A→ R)→ (B → R)→ R =

Λ(A B)λ(x : A)Λ(R)λ(left : A→ R)λ(right : B → R)left x

right : ∀A B.B → ∀R.(A→ R)→ (B → R)→ R =

Λ(A B)λ(x : A)Λ(R)λ(left : B → R)λ(right : B → R)right x

What about case?

An encoded value of type A + B is already a case!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 20 / 20



Sum Types?

What can we do with a value of type A + B?
If we can a function that takes an A and a function that takes a B, we can
definitely provide an argument to one of them.

A + B = ∀R.(A→ R)→ (B → R)→ R

left : ∀A B.A→ ∀R.(A→ R)→ (B → R)→ R =

Λ(A B)λ(x : A)Λ(R)λ(left : A→ R)λ(right : B → R)left x

right : ∀A B.B → ∀R.(A→ R)→ (B → R)→ R =

Λ(A B)λ(x : A)Λ(R)λ(left : B → R)λ(right : B → R)right x

What about case?

An encoded value of type A + B is already a case!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 20 / 20



Sum Types?

What can we do with a value of type A + B?
If we can a function that takes an A and a function that takes a B, we can
definitely provide an argument to one of them.

A + B = ∀R.(A→ R)→ (B → R)→ R

left : ∀A B.A→ ∀R.(A→ R)→ (B → R)→ R =

Λ(A B)λ(x : A)Λ(R)λ(left : A→ R)λ(right : B → R)left x

right : ∀A B.B → ∀R.(A→ R)→ (B → R)→ R =

Λ(A B)λ(x : A)Λ(R)λ(left : B → R)λ(right : B → R)right x

What about case?

An encoded value of type A + B is already a case!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 20 / 20



Sum Types?

What can we do with a value of type A + B?
If we can a function that takes an A and a function that takes a B, we can
definitely provide an argument to one of them.

A + B = ∀R.(A→ R)→ (B → R)→ R

left : ∀A B.A→ ∀R.(A→ R)→ (B → R)→ R =

Λ(A B)λ(x : A)Λ(R)λ(left : A→ R)λ(right : B → R)left x

right : ∀A B.B → ∀R.(A→ R)→ (B → R)→ R =

Λ(A B)λ(x : A)Λ(R)λ(left : B → R)λ(right : B → R)right x

What about case?

An encoded value of type A + B is already a case!

Hype for Types Polymorphism: What’s the deal with ’a? November 5, 2021 20 / 20


	Polymorphism

