Polymorphism: What's the deal with 'a?

Hype for Types

November 5, 2021

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

Polymorphism

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

|dentity

Recall lambda abstraction from the Simply Typed Lambda Calculus

Mx:the:7
Fr-Ax:7)e:7—=1

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 3/20

|dentity

Recall lambda abstraction from the Simply Typed Lambda Calculus

Mx:the:7
FrEXx:T)e:7— 71

Notice, f} we must type annotate every lambda.
Let's write the identity function (assuming some reasonable base types).

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 3/20

|dentity

Recall lambda abstraction from the Simply Typed Lambda Calculus

Mx:the:7
FrEXx:T)e:7— 71

Notice, f} we must type annotate every lambda.

Let's write the identity function (assuming some reasonable base types).
id = A(x : Nat)x

But this only works on Nats!

id true (* type error! *)

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 3/20

|dentity

Recall lambda abstraction from the Simply Typed Lambda Calculus

Mx:the:7
FrEXx:T)e:7— 71

Notice, } we must type annotate every lambda.

Let's write the identity function (assuming some reasonable base types).
id = A(x : Nat)x

But this only works on Nats!

id true (* type error! *)

id2 = \(x : Bool)x

This seems really annoying >: (

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 3/20

What does SML do?

val id = fn (x : ’a) => x
val _ = id 1

val _ = id true

val = id "nice"

id : ’a -> ’a

[} = =

Hype for Types Polymorphism: What's the deal with 'a?

What does SML do?

val id = fn (x : ’a) => x
val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

But what /s ’a? Is it a type?

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 4/20

What does SML do?

val id = fn (x : ’a) => x
val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

But what /s ’a? Is it a type?
If id 1 type checks then 1 : ’a?7??

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 4/20

Polymorphism

Intuitively, we'd like to interpret >a -> ’a as "for all ’a, ’a -> ’a
The "for all” is implicit.

This is great for programming, but confusing to formalize.

Let's make it explicit!

’a => ’a=—Va.a—a

The ticks are no longer needed, as we've explicitly bound a as a type
variable.

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 5/20

Polymorphism

How do we construct a value of type Va.a — a in our new formalism?

We might suggest A(x : a)x, but once again the type variable is being
bound implicitly.

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 6/20

Polymorphism

How do we construct a value of type Va.a — a in our new formalism?
We might suggest A(x : a)x, but once again the type variable is being
bound implicitly.

Let's bind it explicitly!

A(a: Type)A(x: a)x:Va.a— a

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 6/20

Polymorphism

How do we construct a value of type Va.a — a in our new formalism?
We might suggest A(x : a)x, but once again the type variable is being
bound implicitly.

Let's bind it explicitly!

A(a: Type)A(x: a)x:Va.a— a

How do we use this?

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 6/20

Polymorphism

How do we construct a value of type Va.a — a in our new formalism?
We might suggest A(x : a)x, but once again the type variable is being
bound implicitly.

Let's bind it explicitly!

A(a: Type)A(x: a)x:Va.a— a

How do we use this?

(A(a: Type)A(x : a)x)[Nat] = A(x : Nat)x

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 6/20

System F

The polymorphic lambda calculus we've developed is called System F.
Let's write a grammar!

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 7/20

System F

The polymorphic lambda calculus we've developed is called System F.
Let's write a grammar!

e = X term variable
| A(x:7)e term abstraction
| A(t: Type)e type abstraction
| e1e term application
| el[r] type application
T =t type variable
| 71— 7 function type
| Vt.r polymorphic type

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 7/20

System F

And some inference rules!

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

System F

And some inference rules!

te A AF T type AF 1 type At T type
A&t type AF T — ™ type A FVt.T type

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 8/20

System F

And some inference rules!

te A AF T type AF 1 type At T type
A&t type AF T — ™ type A FVt.T type
x-rerl A;T,x:The:7 AFT type
ATHx:T ATEXNx:T)e:T7— 17
AtTFe:T ANTFe:7—=7 ATkFe:T
A;THA(t: Type)e : Vt.r ANTFee 7

ATke:Vtr AFT type
AT Eelr]:7[r/t]

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 8/20

System F

And some inference rules!

te A AF T type AF 1 type At T type
A&t type AF T — ™ type A FVt.T type
x-rerl A;T,x:The:7 AFT type
ATHx:T ATEXNx:T)e:T7— 17
AtTFe:T ANTFe:7—=7 ATkFe:T
A;THA(t: Type)e : Vt.r ANTFee 7

ATke:Vtr AFT type
AT Eelr]:7[r/t]

Question
Do we need anything else? What about product types? Sum types?

3

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021

8/20

Some Fing Functions

swap:Vabc(a—b—c)—(b—a—c)=

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

Some Fing Functions

swap:Vabc(a—b—c)—(b—a—c)=

Aabc:Type)\(f:a—b— c)Ax:b)A(y:a)f y x

=] =) = = PENE
Hype for Types Polymorphism: What's the deal with 'a?

Some Fing Functions

swap:Vabc(a—b—c)—=(b—a—c)=
Aabc:Type)\(f:a—b— c)Ax:b)A(y:a)f y x

compose :Vabc.(a—b) > (b—c)—(a—c)=

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 9/20

Some Fing Functions

swap:VYabc(a—b—c)—(b—>a—c)=
Aabc:Type)\(f:a—b— c)Ax:b)A(y:a)f y x
compose :Vabc.(a—b) > (b—c)—(a—c)=

Aa b c:Type)\(f:a— b)A(g: b — c)\(x: a)g(f x)

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 9/20

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really Va.a — a?

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 10 /20

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really Va.a — a?
Consider:

fun hmm (id ’a -> ’a) = (id 1, id true)

Hype for Types Polymorphism: What's the deal with 'a?

November 5, 2021 10 /20

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really Va.a — a?
Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions.
Our function here is equivalent to:

hmm = A(a : Type)\(id : a — a)(id 1,id true)
Which is not the same as:
hmm = X(id : Va.a — a)(id[int] 1, id[bool] true)

Why? Because type inference for System F is undecidable!

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 10 /20

For all? Exists

type?

If we can express "for all” as a type, can we express "there exists” as a

[} = =
Hype for Types Polymorphism: What's the deal with 'a?

For all? Exists

If we can express "for all” as a type, can we express "there exists” as a
type?

Vt.t — t means "for any type t, if you give me a t, I'll give you a t

Jt.t — t means "there is some specific type t, and if you give me a t, I'll
give you a t”

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 11/20

For all? Exists

If we can express "for all” as a type, can we express "there exists” as a
type?

Vt.t — t means "for any type t, if you give me a t, I'll give you a t

Jt.t — t means "there is some specific type t, and if you give me a t, I'll
give you a t”

Where have you seen the idea of specific, yet unknown type?

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 11/20

For all? Exists

If we can express "for all” as a type, can we express "there exists” as a
type?

Vt.t — t means "for any type t, if you give me a t, I'll give you a t

Jt.t — t means "there is some specific type t, and if you give me a t, I'll
give you a t”

Where have you seen the idea of specific, yet unknown type?
Modules!

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 11/20

Existentialism

signature S

sig

type t

val x t

val £ : t -> t
end

is basically equivalent to:
Jtd{x:t,f:t—t}
or even more simply:

Jtt x (t = t)

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 12 /20

Da Rules

A, tF T type A;THe:[p/tlt AF p type
A Jt.T type A;T & struct type t = p in e : dt.7

ATEM:3tr At;Tx:the: 7 AFT type
A;THopen M as t,xine: 7

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 13 /20

Practical Uses

Stack =

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

Practical Uses

Stack =

EvenStack =

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

dt.{empty : t, push : int — t — t, pop : t — (int X t) option}

Practical Uses

Stack =
dt.{empty : t, push : int — t — t, pop : t — (int X t) option}
EvenStack =

dt.{empty : t, push : int — int — t — t,pop : t — (int X t) option}

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 14 /20

Practical Uses

ListStack : Stack =

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

Practical Uses

ListStack : Stack = struct type t = int list in
{empty = Nil,
push = Cons,

pop = A(s : int list)case s of Nil = None|Cons(x, xs) = Some(x, xs)}

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 15 /20

Practical Uses

mkEvenStack : Stack — EvenStack =

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

Practical Uses

mkEvenStack : Stack — EvenStack =
A(S : Stack)open S as t,s in
struct type t' =t in
{empty = s.empty,
push = \(x : int)\(y : int)s.push y o s.push x,

pop = s.pop}

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 16 / 20

Function Types? No: Type Functions
In SML | can write

type ’a f = ’a * ’a

What is £7 Does it have a type?

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 17/20

Function Types? No: Type Functions

In SML | can write
type ’a f = ’a * ’a

What is £7 Does it have a type?

In simply typed lambda calculus, we can write functions from terms to
terms: A(x : Nat)x

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 17 /20

Function Types? No: Type Functions

In SML | can write
type ’a f = ’a * ’a

What is £7 Does it have a type?

In simply typed lambda calculus, we can write functions from terms to
terms: A(x : Nat)x

In System F we can write functions from types to terms:
A(A: Type)\(x : A)x

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 17 /20

Function Types? No: Type Functions

In SML | can write
type ’a f = ’a * ’a

What is £7 Does it have a type?

In simply typed lambda calculus, we can write functions from terms to
terms: A(x : Nat)x

In System F we can write functions from types to terms:

A(A: Type)\(x : A)x

f is a function from a type to a type. £: Type — Type.

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 17 /20

Function Types? No: Type Functions

In SML | can write
type ’a f = ’a * ’a

What is £7 Does it have a type?

In simply typed lambda calculus, we can write functions from terms to
terms: A(x : Nat)x

In System F we can write functions from types to terms:

A(A: Type)\(x : A)x

f is a function from a type to a type. £: Type — Type.

In SML we're limited to Type — Type, but we could go further.

In System F_,, we can write functions like:

A(F : Type — Type)A\(A: Type)(Ax A) = F A

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 17 /20

A Curious Observation

Do A and V seem conceptually similar to any language features we've
already seen?

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 18 /20

A Curious Observation
Do A and V seem conceptually similar to any language features we've

already seen?
A functions much like A, but instead of taking a term, it takes a type.

V and — seem related in the same sort of way.

Vi =(t: Type) > 7 A(t)e = A(t : Type)e

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 18 /20

A Curious Observation
Do A and V seem conceptually similar to any language features we've

already seen?
A functions much like A, but instead of taking a term, it takes a type.

V and — seem related in the same sort of way.

Vi =(t: Type) > 7 A(t)e = A(t : Type)e

Do struct type t = p in e and 3 remind you of anything?

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 18 /20

A Curious Observation

Do A and V seem conceptually similar to any language features we've

already seen?
A functions much like A, but instead of taking a term, it takes a type.

V and — seem related in the same sort of way.
Vi =(t: Type) > 7 A(t)e = A(t : Type)e

Do struct type t = p in e and 3 remind you of anything?
Our module expressions are really just tuples of a type, and a term that

uses that type!

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 18 /20

A Curious Observation

Do A and V seem conceptually similar to any language features we've
already seen?

A functions much like A, but instead of taking a term, it takes a type.
V and — seem related in the same sort of way.

Vi =(t: Type) > 7 A(t)e = A(t : Type)e

Do struct type t = p in e and 3 remind you of anything?
Our module expressions are really just tuples of a type, and a term that
uses that type!

dt.r = (t: Type) X T struct type t = p in e = (p, €)

This is how we'd express these concepts in a language where we can treat
types like terms!

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 18 /20

We don’t need no type constructors (except V and —)
Can we encode A x B in System F?

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

We don’t need no type constructors (except V and —)
Can we encode A x B in System F? Yes! But How?

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

We don’t need no type constructors (except V and —)

Can we encode A x B in System F? Yes! But How?
What can you do with a value of type A x B?

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 19 /20

We don't need no type constructors (except V and —)

Can we encode A x B in System F? Yes! But How?

What can you do with a value of type A x B?

Well, if we have a function that requires a value of type A and a value of
type B, then we can provide it arguments.

Hype for Types Polymorphism: What's the deal with 'a? November 5, 2021 19 /20

We don't need no type constructors (except V and —)

Can we encode A x B in System F? Yes! But How?

What can you do with a value of type A x B?

Well, if we have a function that requires a value of type A and a value of
type B, then we can provide it arguments.

AxB=VYR(A—-B—R)—=R
pair :YAB.A—B —+VR(A—-B—R)— R=
ANA B)A(x: Ay : BINR)M(f:A—= B —= R)f xy
fst : VAB.(VR(A—-B—R)—R)—> A=
ANA B)X(p : VR.A — B — R)p[A](A(x : A)A(y : B)x)
snd :YAB.(VR(A— B —-R)—R)—B=
ANA B)X(p : VR.A— B — R)p[Bl(A(x : A)A(y : B)y)
November 5, 2021 19/20

Sum Types?

What can we do with a value of type A+ B?

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

Sum Types?

What can we do with a value of type A+ B?

If we can a function that takes an A and a function that takes a B, we can
definitely provide an argument to one of them.

Hype for Types Polymorphism: What's the deal with 'a?

November 5, 2021 20/20

Sum Types?

What can we do with a value of type A+ B?

If we can a function that takes an A and a function that takes a B, we can
definitely provide an argument to one of them.

A+B=VR(A—-R)—»(B—R)—R
left : YA B.A—VYR(A—R)—(B—R)—>R=
A(A B)A(x : AN(R)A(left : A — R)A(right : B — R)left x
right :YAB.B —+VR(A—R)—-(B—R)—>R=

A(A B)A(x : AN(R)A(left : B — R)A(right : B — R)right x

Hype for Types Polymorphism: What's the deal with 'a?

November 5, 2021 20/20

Sum Types?

What can we do with a value of type A+ B?

If we can a function that takes an A and a function that takes a B, we can
definitely provide an argument to one of them.

A+B=VR(A—-R)—»(B—R)—R
left : YA B.A—VYR(A—R)—(B—R)—>R=
A(A B)A(x : AN(R)A(left : A — R)A(right : B — R)left x
right :YAB.B —+VR(A—R)—-(B—R)—>R=

A(A B)A(x : AN(R)A(left : B — R)A(right : B — R)right x

What about case?

An encoded value of type A+ B is already a case! J

Hype for Types Polymorphism: What's the deal with 'a?

November 5, 2021 20/20

	Polymorphism

