Dependent Types

Hype for Types

November 9, 2021

Safe Printing

Detypify

Consider these well typed expressions:

```
sprintf "nice"
sprintf "%d" 5
sprintf "%s,%d" "wow" 32
```

What is the type of sprintf?

Detypify

Consider these well typed expressions:

```
sprintf "nice"
sprintf "%d" 5
sprintf "%s,%d" "wow" 32
```

What is the type of sprintf? Well... it depends.

Types have types too

The type of sprintf *depends* on the value of the argument. In order to compute the type of sprintf, we'll need to write a function that takes a string (List char), and returns a *type*!

Types have types too

The type of sprintf depends on the value of the argument. In order to compute the type of sprintf, we'll need to write a function that takes a string (List char), and returns a type!

```
-- sprintf s : formatType s
```

Types have types too

The type of sprintf depends on the value of the argument. In order to compute the type of sprintf, we'll need to write a function that takes a string (List char), and returns a type!

```
-- sprintf s : formatType s

formatType : List char → Type

formatType [] = List char

formatType ("%" :: "d" :: cs) = int → formatType cs

formatType ("%" :: "s" :: cs) = string → formatType cs

formatType (_ :: cs) = formatType cs
```

Ok, we can express the type of sprintf s for some argument s, but what's the type of sprintf?

Ok, we can express the type of sprintf s for some argument s, but what's the type of sprintf?

Recall that when we wanted to express a type like "A \rightarrow A for all A", we introduced universal quantification over *types*: \forall A.A \rightarrow A.

Ok, we can express the type of sprintf s for some argument s, but what's the type of sprintf?

Recall that when we wanted to express a type like "A \rightarrow A for all A", we introduced universal quantification over *types*: \forall A.A \rightarrow A.

What if we had universal quantification over values?

Ok, we can express the type of sprintf s for some argument s, but what's the type of sprintf?

Recall that when we wanted to express a type like "A \rightarrow A for all A", we introduced universal quantification over *types*: \forall A.A \rightarrow A.

What if we had universal quantification over values?

```
\mathtt{sprintf} \; : \; (\mathtt{s} \; : \; \mathtt{List} \; \; \mathtt{char}) \; \rightarrow \; \mathtt{formatType} \; \; \mathtt{s}
```

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

$$(x:\tau) \to A \equiv \forall x:\tau.A$$

This type can also be written like so:

- \bigcirc $\forall x: t.A$

Question:

Do we need two kinds of arrow now?

One for dependent quantification and one normal?

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

$$(x:\tau) \to A \equiv \forall x:\tau.A$$

This type can also be written like so:

- \bigcirc $\forall x: t.A$

Question:

Do we need two kinds of arrow now?

One for dependent quantification and one normal?

Nope!

$$A \stackrel{\cdot}{\rightarrow} B \equiv (\underline{\ } : A) \rightarrow B$$

Some Rules

$$\frac{\Gamma, x : \tau \vdash e : A \quad \Gamma, x : \tau \vdash A : \mathit{Type}}{\Gamma \vdash \lambda(x : \tau)e : (x : \tau) \rightarrow A}$$

$$\frac{\Gamma \vdash e_1 : (x : \tau) \to A \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \ e_2 : [e_2/x]A}$$

Vectors Again

If we can write functions from values to types, can we define new types which depend on values?

Vectors Again

If we can write functions from values to types, can we define new types which depend on values?

```
data Vec : Type \rightarrow Nat \rightarrow Type where
  Nil : (a : Type) \rightarrow Vec a 0
  Cons : (a : Type) \rightarrow (n : Nat) \rightarrow
              a \rightarrow Vec \ a \ n \rightarrow Vec \ a \ (n+1)
n = 1 + 2
xs : Vec string n
XS
     Cons string 2 "hype" (
          Cons string 1 (Int.toString (n+1)) (
                Cons string 0 "types" (Nil string)))
```

Vectors are actually usable now!

```
val append : (a : Type) \rightarrow (n m : Nat) \rightarrow
                     Vec a n \rightarrow
                     Vec a m \rightarrow
                     Vec a (n + m)
val repeat : (a : Type) \rightarrow (n : Nat) \rightarrow
                     \mathtt{a} 	o
                     Vec a n
val filter : (a : Type) \rightarrow (n : Nat) \rightarrow
                      (a \rightarrow bool) \rightarrow
                     Vec a n \rightarrow
                     Nat \times Vec a ??
```

Duality

If we can quantify over the argument to a function, can we quantify over the left element of a tuple?

Duality

If we can quantify over the argument to a function, can we quantify over the left element of a tuple? Yes!

$$(x:\tau)\times A\equiv \exists x:\tau.A$$

This type can also be written:

- **1** $\{x : \tau \mid A\}$
- $\sum_{x \in \mathcal{T}} A$

As before, $A \times B \equiv (\underline{\ } : A) \times B$

```
val filter : (a : Type) \rightarrow (n : Nat) \rightarrow
                       (a \rightarrow bool) \rightarrow
                      Vec a n \rightarrow
                       (m : Nat) \times Vec a m
```

More Rules

$$\frac{\Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : [e_1/x]A \quad \Gamma, x : \tau \vdash A : \textit{Type}}{\Gamma \vdash (e_1, e_2) : (x : \tau) \times A}$$

$$\frac{\Gamma \vdash e : (x : \tau) \times A}{\Gamma \vdash \pi_1 \ e : \tau} \qquad \frac{\Gamma \vdash e : (x : \tau) \times A}{\Gamma \vdash \pi_2 \ e : [\pi_1 \ e/x]A}$$

Ok, so what?

Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:

```
(* REQUIRES : input sequence is sorted *)
val search : int → int seq → int option
> search 3 [5,4,3] ==> NONE
(* "search is broken!" *)
(* piazza post ensues *)
```

Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:

//@requires is_sorted(xs)

```
(* REQUIRES : input sequence is sorted *)
val search : int → int seq → int option

> search 3 [5,4,3] ==> NONE
  (* "search is broken!" *)
  (* piazza post ensues *)

The 122 solution:
```

Nice, but only works at runtime.

Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:

```
(* REQUIRES : input sequence is sorted *)
val search : int → int seq → int option

> search 3 [5,4,3] ==> NONE
(* "search is broken!" *)
(* piazza post ensues *)
```

The 122 solution:

```
//@requires is_sorted(xs)
```

Nice, but only works at runtime. What if passing search a non-sorted list was type error?

```
(* REQUIRES : second argument is greater than zero *) val div : Nat \rightarrow Nat \rightarrow Nat
```

Comment contracts are not great, solutions?

Hype for Types

```
(* REQUIRES : second argument is greater than zero *) val div : Nat \rightarrow Nat \rightarrow Nat
```

Comment contracts are not great, solutions?

```
val div : Nat \rightarrow Nat \rightarrow Nat option
```

Incurs runtime cost to check for zero, and you still have to fail if it happens.

```
(* REQUIRES : second argument is greater than zero *) val div : Nat \rightarrow Nat \rightarrow Nat
```

Comment contracts are not great, solutions?

```
\mathtt{val}\ \mathtt{div}\ :\ \mathtt{Nat} 	o\ \mathtt{Nat} 	o\ \mathtt{Nat}\ \mathtt{option}
```

Incurs runtime cost to check for zero, and you still have to fail if it happens.

```
val div : Nat \rightarrow (n : Nat) \times (1 \leq n) \rightarrowNat
```

Dividing by zero is impossible! And we incur no runtime cost to prevent it.

```
(* REQUIRES : second argument is greater than zero *) val div : Nat \rightarrow Nat \rightarrow Nat
```

Comment contracts are not great, solutions?

```
\verb"val" div": \verb"Nat" \to \verb"Nat" \to \verb"Nat" option"
```

Incurs runtime cost to check for zero, and you still have to fail if it happens.

```
val div : Nat \rightarrow (n : Nat) \times (1 \leq n) \rightarrowNat
```

Dividing by zero is impossible! And we incur no runtime cost to prevent it. What does a value of type $(n : Nat) \times (1 \le n)$ look like?

$$(3, conceptsHW1.pdf) : (n : Nat) \times (1 \le n)$$

Question:

What goes in the PDF?

What constitutes a proof of $n \le m$?

15 / 17

Hype for Types Dependent Types November 9, 2021

What constitutes a proof of $n \le m$?

We just have to define what (\leq) means!

- \bullet $\forall n. \ 0 \leq n$

This looks familiar!

15 / 17

Hype for Types Dependent Types November 9, 2021

What constitutes a proof of $n \le m$?

We just have to define what (\leq) means!

- \bullet $\forall n. \ 0 \leq n$

This looks familiar!

$$\begin{array}{lll} \texttt{data} & \leq \leq & : & \texttt{Nat} \to \texttt{Nat} \to \texttt{Type} & \texttt{where} \\ \texttt{LeqZ} & : & (\texttt{n} : & \texttt{Nat}) \to \texttt{0} & \leq & \texttt{n} \\ \texttt{LeqS} & : & (\texttt{n} : & \texttt{Nat}) \to \texttt{(m} : & \texttt{Nat}) \to \\ & & \texttt{n} & \leq & \texttt{m} \to \texttt{(n + 1)} & \leq & \texttt{(m + 1)} \end{array}$$

What constitutes a proof of $n \le m$?

We just have to define what (\leq) means!

- \bullet $\forall n. \ 0 \leq n$

This looks familiar!

data
$$_\leq_$$
 : Nat \to Nat \to Type where LeqZ : (n : Nat) \to 0 \leq n LeqS : (n : Nat) \to (m : Nat) \to n \leq m \to (n + 1) \leq (m + 1)

LeqZ
$$3: 0 \le 3$$

What constitutes a proof of $n \le m$?

We just have to define what (\leq) means!

- \bullet $\forall n. \ 0 \leq n$

This looks familiar!

$$\begin{array}{lll} \texttt{data} & \leq \underline{\quad} : & \texttt{Nat} \to \texttt{Nat} \to \texttt{Type} & \texttt{where} \\ \texttt{LeqZ} & : & (\texttt{n} : \texttt{Nat}) \to \texttt{0} \leq \texttt{n} \\ \texttt{LeqS} & : & (\texttt{n} : \texttt{Nat}) \to \texttt{(m} : \texttt{Nat)} \to \\ & \texttt{n} \leq \texttt{m} \to \texttt{(n + 1)} \leq \texttt{(m + 1)} \end{array}$$

LeqZ 3 : 0 \leq 3 LeqZ 43 : 0 \leq 43

What constitutes a proof of $n \le m$?

We just have to define what (\leq) means!

- $\mathbf{0} \quad \forall n. \ 0 \leq n$

This looks familiar!

$$\begin{array}{lll} \texttt{data} & \underline{\leq} \underline{\quad} : & \texttt{Nat} \to \texttt{Nat} \to \texttt{Type} & \texttt{where} \\ \texttt{LeqZ} & : & (\texttt{n} : \texttt{Nat}) \to \texttt{0} & \leq \texttt{n} \\ \texttt{LeqS} & : & (\texttt{n} : \texttt{Nat}) \to \texttt{(m} : \texttt{Nat)} \to \\ & & \texttt{n} & \leq \texttt{m} \to \texttt{(n + 1)} & \leq \texttt{(m + 1)} \end{array}$$

 $LeqZ \ 3: 0 \le 3$ $LeqZ \ 43: 0 \le 43$ $LeqS \ 0 \ 2 \ (LeqZ \ 2): 1 \le 3$

What constitutes a proof of $n \le m$? We just have to define what (\le) means!

- $\mathbf{0} \quad \forall n. \ 0 \leq n$

This looks familiar!

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Hype for Types Dependent Types November 9, 2021 15 / 17

Some Sort of Contract

```
data NatList: Type where
  Nil : NatList
  Cons : Nat \rightarrow NatList \rightarrow NatList
data Sorted : NatList \rightarrow Type where
  NilSorted: Sorted Nil
  SingSorted : (n : Nat) \rightarrow Sorted (Cons n Nil)
  ConsSorted : (n m : Nat) \rightarrow (xs : NatList) \rightarrow
                         \mathtt{n} < \mathtt{m} \rightarrow
                         Sorted (Cons m xs) \rightarrow
                         Sorted (Cons n (Cons m xs))
val search : Nat \rightarrow
                  (xs : NatList) \rightarrow
                  Sorted xs \rightarrow
                  Nat option
```

A Type for Term Equality

If we can express a relation like less than or equal, how about equality?

Hype for Types Dependent Types November 9, 2021 17 / 17

A Type for Term Equality

If we can express a relation like less than or equal, how about equality?

```
data Eq : (a : Type) \rightarrow a \rightarrow a \rightarrow Type where Refl : (a : Type) \rightarrow (x : a) \rightarrow Eq a x x symm : (a : Type) (x y : a) \rightarrow Eq a x y \rightarrow Eq a y x symm a x y (Refl A q) = Refl A q trans : (a : Type) (x y z : a) \rightarrow Eq a x y \rightarrow Eq a y z \rightarrow Eq a x z trans a x y z (Refl A q) (Refl _ _ _) = Refl A q
```

```
plus_comm : (n m : Nat) \rightarrow Eq Nat (n + m) (m + n) inf_primes : (n : nat) \rightarrow (m : Nat) \times ((m > n) \times (Prime m))
```

◆ロト ◆個ト ◆意ト ◆意ト · 意 · からぐ