
Dependent Types

Hype for Types

November 9, 2021

Hype for Types Dependent Types November 9, 2021 1 / 17

Safe Printing

Hype for Types Dependent Types November 9, 2021 2 / 17

Detypify

Consider these well typed expressions:

sprintf "nice"

sprintf "%d" 5

sprintf "%s,%d" "wow" 32

What is the type of sprintf?

Well... it depends.

Hype for Types Dependent Types November 9, 2021 3 / 17

Detypify

Consider these well typed expressions:

sprintf "nice"

sprintf "%d" 5

sprintf "%s,%d" "wow" 32

What is the type of sprintf? Well... it depends.

Hype for Types Dependent Types November 9, 2021 3 / 17

Types have types too

The type of sprintf depends on the value of the argument.
In order to compute the type of sprintf, we’ll need to write a function
that takes a string (List char), and returns a type!

-- sprintf s : formatType s

formatType : List char → Type

formatType [] = List char

formatType ("%" :: "d" :: cs) = int → formatType cs

formatType ("%" :: "s" :: cs) = string → formatType cs

formatType (_ :: cs) = formatType cs

Hype for Types Dependent Types November 9, 2021 4 / 17

Types have types too

The type of sprintf depends on the value of the argument.
In order to compute the type of sprintf, we’ll need to write a function
that takes a string (List char), and returns a type!

-- sprintf s : formatType s

formatType : List char → Type

formatType [] = List char

formatType ("%" :: "d" :: cs) = int → formatType cs

formatType ("%" :: "s" :: cs) = string → formatType cs

formatType (_ :: cs) = formatType cs

Hype for Types Dependent Types November 9, 2021 4 / 17

Types have types too

The type of sprintf depends on the value of the argument.
In order to compute the type of sprintf, we’ll need to write a function
that takes a string (List char), and returns a type!

-- sprintf s : formatType s

formatType : List char → Type

formatType [] = List char

formatType ("%" :: "d" :: cs) = int → formatType cs

formatType ("%" :: "s" :: cs) = string → formatType cs

formatType (_ :: cs) = formatType cs

Hype for Types Dependent Types November 9, 2021 4 / 17

Quantification

Ok, we can express the type of sprintf s for some argument s, but
what’s the type of sprintf?

Recall that when we wanted to express a type like ”A -> A for all A”, we
introduced universal quantification over types: ∀ A.A -> A.
What if we had universal quantification over values?

sprintf : (s : List char) → formatType s

Hype for Types Dependent Types November 9, 2021 5 / 17

Quantification

Ok, we can express the type of sprintf s for some argument s, but
what’s the type of sprintf?
Recall that when we wanted to express a type like ”A -> A for all A”, we
introduced universal quantification over types: ∀ A.A -> A.

What if we had universal quantification over values?

sprintf : (s : List char) → formatType s

Hype for Types Dependent Types November 9, 2021 5 / 17

Quantification

Ok, we can express the type of sprintf s for some argument s, but
what’s the type of sprintf?
Recall that when we wanted to express a type like ”A -> A for all A”, we
introduced universal quantification over types: ∀ A.A -> A.
What if we had universal quantification over values?

sprintf : (s : List char) → formatType s

Hype for Types Dependent Types November 9, 2021 5 / 17

Quantification

Ok, we can express the type of sprintf s for some argument s, but
what’s the type of sprintf?
Recall that when we wanted to express a type like ”A -> A for all A”, we
introduced universal quantification over types: ∀ A.A -> A.
What if we had universal quantification over values?

sprintf : (s : List char) → formatType s

Hype for Types Dependent Types November 9, 2021 5 / 17

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

(x : τ)→ A ≡ ∀x : τ.A

This type can also be written like so:

1 ∀(x : τ)→ A

2 ∀x : t.A

3 Πx :τA

Question:

Do we need two kinds of arrow now?
One for dependent quantification and one normal?
Nope!
A→ B ≡ (: A)→ B

Hype for Types Dependent Types November 9, 2021 6 / 17

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

(x : τ)→ A ≡ ∀x : τ.A

This type can also be written like so:

1 ∀(x : τ)→ A

2 ∀x : t.A

3 Πx :τA

Question:

Do we need two kinds of arrow now?
One for dependent quantification and one normal?

Nope!
A→ B ≡ (: A)→ B

Hype for Types Dependent Types November 9, 2021 6 / 17

Curry-Howard Again

What kind of proposition does quantification over values correspond to?

(x : τ)→ A ≡ ∀x : τ.A

This type can also be written like so:

1 ∀(x : τ)→ A

2 ∀x : t.A

3 Πx :τA

Question:

Do we need two kinds of arrow now?
One for dependent quantification and one normal?
Nope!
A→ B ≡ (: A)→ B

Hype for Types Dependent Types November 9, 2021 6 / 17

Some Rules

Γ, x : τ ` e : A Γ, x : τ ` A : Type

Γ ` λ(x : τ)e : (x : τ)→ A

Γ ` e1 : (x : τ)→ A Γ ` e2 : τ

Γ ` e1 e2 : [e2/x]A

Hype for Types Dependent Types November 9, 2021 7 / 17

Vectors Again

If we can write functions from values to types, can we define new types
which depend on values?

data Vec : Type → Nat → Type where

Nil : (a : Type) → Vec a 0

Cons : (a : Type) → (n : Nat) →
a → Vec a n → Vec a (n+1)

n = 1 + 2

xs : Vec string n

xs =

Cons string 2 "hype" (

Cons string 1 (Int.toString (n+1)) (

Cons string 0 "types" (Nil string)))

Hype for Types Dependent Types November 9, 2021 8 / 17

Vectors Again

If we can write functions from values to types, can we define new types
which depend on values?

data Vec : Type → Nat → Type where

Nil : (a : Type) → Vec a 0

Cons : (a : Type) → (n : Nat) →
a → Vec a n → Vec a (n+1)

n = 1 + 2

xs : Vec string n

xs =

Cons string 2 "hype" (

Cons string 1 (Int.toString (n+1)) (

Cons string 0 "types" (Nil string)))

Hype for Types Dependent Types November 9, 2021 8 / 17

Vectors are actually usable now!

val append : (a : Type) → (n m : Nat) →
Vec a n →
Vec a m →
Vec a (n + m)

val repeat : (a : Type) → (n : Nat) →
a →
Vec a n

val filter : (a : Type) → (n : Nat) →
(a → bool) →
Vec a n →
Nat × Vec a ??

Hype for Types Dependent Types November 9, 2021 9 / 17

Duality

If we can quantify over the argument to a function, can we quantify over
the left element of a tuple?

Yes!

(x : τ)× A ≡ ∃x : τ.A

This type can also be written:

1 {x : τ | A}
2 Σx :τA

As before, A× B ≡ (: A)× B

val filter : (a : Type) → (n : Nat) →
(a → bool) →
Vec a n →
(m : Nat) × Vec a m

Hype for Types Dependent Types November 9, 2021 10 / 17

Duality

If we can quantify over the argument to a function, can we quantify over
the left element of a tuple?
Yes!

(x : τ)× A ≡ ∃x : τ.A

This type can also be written:

1 {x : τ | A}
2 Σx :τA

As before, A× B ≡ (: A)× B

val filter : (a : Type) → (n : Nat) →
(a → bool) →
Vec a n →
(m : Nat) × Vec a m

Hype for Types Dependent Types November 9, 2021 10 / 17

More Rules

Γ ` e1 : τ Γ ` e2 : [e1/x]A Γ, x : τ ` A : Type

Γ ` (e1, e2) : (x : τ)× A

Γ ` e : (x : τ)× A

Γ ` π1 e : τ

Γ ` e : (x : τ)× A

Γ ` π2 e : [π1 e/x]A

Hype for Types Dependent Types November 9, 2021 11 / 17

Ok, so what?

Hype for Types Dependent Types November 9, 2021 12 / 17

Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:

(* REQUIRES : input sequence is sorted *)

val search : int → int seq → int option

> search 3 [5,4,3] ==> NONE

(* "search is broken !" *)

(* piazza post ensues *)

The 122 solution:

// @requires is_sorted(xs)

Nice, but only works at runtime. What if passing search a non-sorted list was

type error?

Hype for Types Dependent Types November 9, 2021 13 / 17

Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:

(* REQUIRES : input sequence is sorted *)

val search : int → int seq → int option

> search 3 [5,4,3] ==> NONE

(* "search is broken !" *)

(* piazza post ensues *)

The 122 solution:

// @requires is_sorted(xs)

Nice, but only works at runtime.

What if passing search a non-sorted list was

type error?

Hype for Types Dependent Types November 9, 2021 13 / 17

Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:

(* REQUIRES : input sequence is sorted *)

val search : int → int seq → int option

> search 3 [5,4,3] ==> NONE

(* "search is broken !" *)

(* piazza post ensues *)

The 122 solution:

// @requires is_sorted(xs)

Nice, but only works at runtime. What if passing search a non-sorted list was

type error?

Hype for Types Dependent Types November 9, 2021 13 / 17

A simpler example

(* REQUIRES : second argument is greater than zero *)

val div : Nat → Nat → Nat

Comment contracts are not great, solutions?

val div : Nat → Nat → Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.

val div : Nat → (n : Nat) × (1 ≤ n) →Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.
What does a value of type (n : Nat)× (1 ≤ n) look like?

(3, conceptsHW1.pdf) : (n : Nat)× (1 ≤ n)

Question:
What goes in the PDF?

Hype for Types Dependent Types November 9, 2021 14 / 17

A simpler example

(* REQUIRES : second argument is greater than zero *)

val div : Nat → Nat → Nat

Comment contracts are not great, solutions?

val div : Nat → Nat → Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.

val div : Nat → (n : Nat) × (1 ≤ n) →Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.
What does a value of type (n : Nat)× (1 ≤ n) look like?

(3, conceptsHW1.pdf) : (n : Nat)× (1 ≤ n)

Question:
What goes in the PDF?

Hype for Types Dependent Types November 9, 2021 14 / 17

A simpler example

(* REQUIRES : second argument is greater than zero *)

val div : Nat → Nat → Nat

Comment contracts are not great, solutions?

val div : Nat → Nat → Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.

val div : Nat → (n : Nat) × (1 ≤ n) →Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.

What does a value of type (n : Nat)× (1 ≤ n) look like?

(3, conceptsHW1.pdf) : (n : Nat)× (1 ≤ n)

Question:
What goes in the PDF?

Hype for Types Dependent Types November 9, 2021 14 / 17

A simpler example

(* REQUIRES : second argument is greater than zero *)

val div : Nat → Nat → Nat

Comment contracts are not great, solutions?

val div : Nat → Nat → Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.

val div : Nat → (n : Nat) × (1 ≤ n) →Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.
What does a value of type (n : Nat)× (1 ≤ n) look like?

(3, conceptsHW1.pdf) : (n : Nat)× (1 ≤ n)

Question:
What goes in the PDF?

Hype for Types Dependent Types November 9, 2021 14 / 17

15-151 Refresher

What constitutes a proof of n ≤ m?

We just have to define what (≤) means!

1 ∀n. 0 ≤ n

2 ∀m n. n ≤ m⇒ n + 1 ≤ m + 1

This looks familiar!

data _≤_ : Nat →Nat → Type where

LeqZ : (n : Nat) → 0 ≤ n

LeqS : (n : Nat) → (m : Nat) →
n ≤ m →(n + 1) ≤ (m + 1)

LeqZ 3 : 0 ≤ 3
LeqZ 43 : 0 ≤ 43

LeqS 0 2 (LeqZ 2) : 1 ≤ 3
(3, LeqS 0 2 (LeqZ 2)) : (n : Nat)× (1 ≤ n)

Hype for Types Dependent Types November 9, 2021 15 / 17

15-151 Refresher

What constitutes a proof of n ≤ m?
We just have to define what (≤) means!

1 ∀n. 0 ≤ n

2 ∀m n. n ≤ m⇒ n + 1 ≤ m + 1

This looks familiar!

data _≤_ : Nat →Nat → Type where

LeqZ : (n : Nat) → 0 ≤ n

LeqS : (n : Nat) → (m : Nat) →
n ≤ m →(n + 1) ≤ (m + 1)

LeqZ 3 : 0 ≤ 3
LeqZ 43 : 0 ≤ 43

LeqS 0 2 (LeqZ 2) : 1 ≤ 3
(3, LeqS 0 2 (LeqZ 2)) : (n : Nat)× (1 ≤ n)

Hype for Types Dependent Types November 9, 2021 15 / 17

15-151 Refresher

What constitutes a proof of n ≤ m?
We just have to define what (≤) means!

1 ∀n. 0 ≤ n

2 ∀m n. n ≤ m⇒ n + 1 ≤ m + 1

This looks familiar!

data _≤_ : Nat →Nat → Type where

LeqZ : (n : Nat) → 0 ≤ n

LeqS : (n : Nat) → (m : Nat) →
n ≤ m →(n + 1) ≤ (m + 1)

LeqZ 3 : 0 ≤ 3
LeqZ 43 : 0 ≤ 43

LeqS 0 2 (LeqZ 2) : 1 ≤ 3
(3, LeqS 0 2 (LeqZ 2)) : (n : Nat)× (1 ≤ n)

Hype for Types Dependent Types November 9, 2021 15 / 17

15-151 Refresher

What constitutes a proof of n ≤ m?
We just have to define what (≤) means!

1 ∀n. 0 ≤ n

2 ∀m n. n ≤ m⇒ n + 1 ≤ m + 1

This looks familiar!

data _≤_ : Nat →Nat → Type where

LeqZ : (n : Nat) → 0 ≤ n

LeqS : (n : Nat) → (m : Nat) →
n ≤ m →(n + 1) ≤ (m + 1)

LeqZ 3 : 0 ≤ 3

LeqZ 43 : 0 ≤ 43
LeqS 0 2 (LeqZ 2) : 1 ≤ 3

(3, LeqS 0 2 (LeqZ 2)) : (n : Nat)× (1 ≤ n)

Hype for Types Dependent Types November 9, 2021 15 / 17

15-151 Refresher

What constitutes a proof of n ≤ m?
We just have to define what (≤) means!

1 ∀n. 0 ≤ n

2 ∀m n. n ≤ m⇒ n + 1 ≤ m + 1

This looks familiar!

data _≤_ : Nat →Nat → Type where

LeqZ : (n : Nat) → 0 ≤ n

LeqS : (n : Nat) → (m : Nat) →
n ≤ m →(n + 1) ≤ (m + 1)

LeqZ 3 : 0 ≤ 3
LeqZ 43 : 0 ≤ 43

LeqS 0 2 (LeqZ 2) : 1 ≤ 3
(3, LeqS 0 2 (LeqZ 2)) : (n : Nat)× (1 ≤ n)

Hype for Types Dependent Types November 9, 2021 15 / 17

15-151 Refresher

What constitutes a proof of n ≤ m?
We just have to define what (≤) means!

1 ∀n. 0 ≤ n

2 ∀m n. n ≤ m⇒ n + 1 ≤ m + 1

This looks familiar!

data _≤_ : Nat →Nat → Type where

LeqZ : (n : Nat) → 0 ≤ n

LeqS : (n : Nat) → (m : Nat) →
n ≤ m →(n + 1) ≤ (m + 1)

LeqZ 3 : 0 ≤ 3
LeqZ 43 : 0 ≤ 43

LeqS 0 2 (LeqZ 2) : 1 ≤ 3

(3, LeqS 0 2 (LeqZ 2)) : (n : Nat)× (1 ≤ n)

Hype for Types Dependent Types November 9, 2021 15 / 17

15-151 Refresher

What constitutes a proof of n ≤ m?
We just have to define what (≤) means!

1 ∀n. 0 ≤ n

2 ∀m n. n ≤ m⇒ n + 1 ≤ m + 1

This looks familiar!

data _≤_ : Nat →Nat → Type where

LeqZ : (n : Nat) → 0 ≤ n

LeqS : (n : Nat) → (m : Nat) →
n ≤ m →(n + 1) ≤ (m + 1)

LeqZ 3 : 0 ≤ 3
LeqZ 43 : 0 ≤ 43

LeqS 0 2 (LeqZ 2) : 1 ≤ 3
(3, LeqS 0 2 (LeqZ 2)) : (n : Nat)× (1 ≤ n)

Hype for Types Dependent Types November 9, 2021 15 / 17

Some Sort of Contract

data NatList : Type where

Nil : NatList

Cons : Nat → NatList → NatList

data Sorted : NatList → Type where

NilSorted : Sorted Nil

SingSorted : (n : Nat) → Sorted (Cons n Nil)

ConsSorted : (n m : Nat) → (xs : NatList) →
n ≤ m →
Sorted (Cons m xs) →
Sorted (Cons n (Cons m xs))

val search : Nat →
(xs : NatList) →
Sorted xs →
Nat option

Hype for Types Dependent Types November 9, 2021 16 / 17

A Type for Term Equality

If we can express a relation like less than or equal, how about equality?

data Eq : (a : Type) → a → a → Type where

Refl : (a : Type) → (x : a) → Eq a x x

symm : (a : Type) (x y : a) → Eq a x y → Eq a y x

symm a x y (Refl A q) = Refl A q

trans : (a : Type) (x y z : a) → Eq a x y → Eq a y z →
Eq a x z

trans a x y z (Refl A q) (Refl _ _) = Refl A q

plus_comm : (n m : Nat) → Eq Nat (n + m) (m + n)

inf_primes : (n : nat) →
(m : Nat) × ((m > n) × (Prime m))

Hype for Types Dependent Types November 9, 2021 17 / 17

A Type for Term Equality

If we can express a relation like less than or equal, how about equality?

data Eq : (a : Type) → a → a → Type where

Refl : (a : Type) → (x : a) → Eq a x x

symm : (a : Type) (x y : a) → Eq a x y → Eq a y x

symm a x y (Refl A q) = Refl A q

trans : (a : Type) (x y z : a) → Eq a x y → Eq a y z →
Eq a x z

trans a x y z (Refl A q) (Refl _ _) = Refl A q

plus_comm : (n m : Nat) → Eq Nat (n + m) (m + n)

inf_primes : (n : nat) →
(m : Nat) × ((m > n) × (Prime m))

Hype for Types Dependent Types November 9, 2021 17 / 17

	Safe Printing
	Ok, so what?

