Dependent Types

Hype for Types

November 9, 2021

=] & = E DA
Hype for Types Dependent Types



Safe Printing

=] & = E DA
Hype for Types Dependent Types



Detypify

Consider these well typed expressions:

sprintf "mnice"
sprintf "%d" 5
sprintf "%s,%d" "wow" 32

What is the type of sprintf?

Hype for Types Dependent Types

November 9, 2021 3/17



Detypify

Consider these well typed expressions:

sprintf "mnice"
sprintf "%d" 5
sprintf "%s,%d" "wow" 32

What is the type of sprintf? Well... it depends.

Hype for Types Dependent Types

November 9, 2021 3/17



Types have types too

The type of sprintf depends on the value of the argument.

In order to compute the type of sprintf, we'll need to write a function
that takes a string (List char), and returns a type!

Hype for Types Dependent Types November 9, 2021 4/17



Types have types too

The type of sprintf depends on the value of the argument.

In order to compute the type of sprintf, we'll need to write a function
that takes a string (List char), and returns a type!

-- sprintf s : formatType s

Hype for Types Dependent Types

November 9, 2021 4/17



Types have types too

The type of sprintf depends on the value of the argument.
In order to compute the type of sprintf, we'll need to write a function
that takes a string (List char), and returns a type!

-- sprintf s : formatType s

formatType : List char — Type
formatType [] = List char

formatType ("%" :: "d" :: cs) = int — formatType cs
formatType ("%" :: "s" :: cs) = string — formatType cs
formatType (_ :: cs) = formatType cs

Hype for Types Dependent Types November 9, 2021 4/17



Quantification

Ok, we can express the type of sprintf s for some argument s, but
what's the type of sprintf?

Hype for Types Dependent Types November 9, 2021 5/17



Quantification

Ok, we can express the type of sprintf s for some argument s, but
what's the type of sprintf?

Recall that when we wanted to express a type like "A -> A for all A", we
introduced universal quantification over types: V A.A -> A.

Hype for Types Dependent Types November 9, 2021 5/17



Quantification

Ok, we can express the type of sprintf s for some argument s, but
what's the type of sprintf?

Recall that when we wanted to express a type like "A -> A for all A", we
introduced universal quantification over types: V A.A -> A.

What if we had universal quantification over values?

Hype for Types Dependent Types November 9, 2021 5/17



Quantification

Ok, we can express the type of sprintf s for some argument s, but
what's the type of sprintf?

Recall that when we wanted to express a type like "A -> A for all A", we
introduced universal quantification over types: V A.A -> A.
What if we had universal quantification over values?

sprintf : (s : List char) — formatType s

Hype for Types Dependent Types November 9, 2021 5/17



Curry-Howard Again

What kind of proposition does quantification over values correspond to?

Hype for Types Dependent Types November 9, 2021 6/17



Curry-Howard Again

What kind of proposition does quantification over values correspond to?
(x:7) > A =V¥x:TA

This type can also be written like so:
QVix:7)—> A
Q Vx:tA
0 M.,A

Question:

Do we need two kinds of arrow now?
One for dependent quantification and one normal?

Hype for Types Dependent Types November 9, 2021 6/17



Curry-Howard Again

What kind of proposition does quantification over values correspond to?
(x:7) > A = Vx:TA

This type can also be written like so:
QVix:7)—> A
Q Vx:tA
0 M.,A

Question:

Do we need two kinds of arrow now?

One for dependent quantification and one normal?
Nope!

A—-B=(_:A)—B

Hype for Types Dependent Types November 9, 2021 6/17



Some Rules

MNx:7He:A Ix:7FHA: Type
FEAx:7)e:(x:7) > A

lFe:(x:7)=A The: 7

e e [e/x]A
or 9 = T 9ae




Vectors Again

If we can write functions from values to types, can we define new types
which depend on values?

Hype for Types Dependent Types November 9, 2021 8/17



Vectors Again

If we can write functions from values to types, can we define new types
which depend on values?

data Vec : Type — Nat — Type where
Nil : (a : Type) — Vec a O
Cons : (a : Type) — (n : Nat) —
a— Vec a n— Vec a (n+1)

n=1+2
xs : Vec string n
Xs =

Cons string 2 "hype" (
Cons string 1 (Int.toString (n+1)) (
Cons string O "types" (Nil string)))

Hype for Types Dependent Types November 9, 2021

8/17



Vectors are actually usable now!

val append : (a : Type) — (n m : Nat) —
Vec a n—
Vec a m—
Vec a (n + m)

val repeat : (a : Type) — (n : Nat) —
a—
Vec a n

val filter : (a : Type) — (n : Nat) —
(a— bool) —
Vec a n—
Nat X Vec a 77

Hype for Types Dependent Types November 9, 2021 9/17



Duality

If we can quantify over the argument to a function, can we quantify over
the left element of a tuple?

Hype for Types Dependent Types November 9, 2021 10/17



Duality

If we can quantify over the argument to a function, can we quantify over
the left element of a tuple?
Yes!

(x:T)xA=3x:T.A

This type can also be written:
Q {x:7|A}
9 X A
As before, Ax B=(_:A)x B
val filter : (a : Type) — (n : Nat) —
(a— bool) —

Vec a n—
(m : Nat) X Vec a m

Hype for Types Dependent Types November 9, 2021 10/17



More Rules

lFe:7 The:[a/x]A T,x:7FA: Type
M- (e, ) (x:7)xA

NFe:(x:7)xA le:(x:7)xA
Ml-me:r eme:[m e/x]A

Hype for Types Dependent Types November 9, 2021 11/17



Ok, so what?

=] & = E DA
Hype for Types Dependent Types



Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:

(* REQUIRES : input sequence is sorted *)
val search : int — int seq — int option

> search 3 [5,4,3] ==> NONE
(* "search is broken!" x*)
(* piazza post ensues x*)

[} = =

Hype for Types Dependent Types



Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:

(* REQUIRES : input sequence is sorted *)
val search : int — int seq — int option

> search 3 [5,4,3] ==> NONE
(* "search is broken!" x*)
(* piazza post ensues x*)

The 122 solution:
//@requires is_sorted(xs)

Nice, but only works at runtime.

Hype for Types Dependent Types November 9, 2021 13 /17



Contracts are actually pretty nice

A familiar frustration for 150 students and TAs:
(* REQUIRES : input sequence is sorted *)

val search : int — int seq — int option

> search 3 [5,4,3] ==> NONE
(* "search is broken!" x*)
(* piazza post ensues x*)

The 122 solution:

//@requires is_sorted(xs)

Nice, but only works at runtime. What if passing search a non-sorted list was
type error?

Hype for Types Dependent Types November 9, 2021 13 /17



A simpler example

(*x REQUIRES
val div

Nat —+ Nat — Nat

Comment contracts are not great, solutions?

second argument is greater than zero *)

=] & = E DA
Hype for Types Dependent Types



A simpler example

(* REQUIRES : second argument is greater than zero )
val div : Nat — Nat — Nat

Comment contracts are not great, solutions?
val div : Nat — Nat — Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.

Hype for Types Dependent Types November 9, 2021 14 /17



A simpler example

(* REQUIRES : second argument is greater than zero )

val div : Nat — Nat — Nat

Comment contracts are not great, solutions?

val div : Nat — Nat — Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.
val div : Nat — (n : Nat) x (1 < n) —Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.

Hype for Types Dependent Types November 9, 2021 14 /17



A simpler example

(* REQUIRES : second argument is greater than zero )
val div : Nat — Nat — Nat

Comment contracts are not great, solutions?

val div : Nat — Nat — Nat option

Incurs runtime cost to check for zero, and you still have to fail if it happens.
val div : Nat — (n : Nat) x (1 < n) —Nat

Dividing by zero is impossible! And we incur no runtime cost to prevent it.
What does a value of type (n: Nat) x (1 < n) look like?

(3, conceptsHW1.pdf) : (n: Nat) x (1 < n)

Question:
What goes in the PDF? J

Hype for Types Dependent Types November 9, 2021 14 /17



15-151 Refresher

What constitutes a proof of n < m?

=] & = E DA
Hype for Types Dependent Types



15-151 Refresher

What constitutes a proof of n < m?
We just have to define what (<) means!
Q@ Vn.0<n

Q@ Vvmnn<m=n+1<m+1
This looks familiar!

Hype for Types Dependent Types

November 9, 2021 15 /17



15-151 Refresher

What constitutes a proof of n < m?
We just have to define what (<) means!
Q@ Vn.0<n

Q@ Vvmnn<m=n+1<m+1
This looks familiar!

data _<_ : Nat —Nat — Type where
LeqZ : (n : Nat) - 0 < n
LegS : (n : Nat) - (m : Nat) —
n <m—=(n + 1) < (m + 1)

Hype for Types Dependent Types November 9, 2021 15 /17



15-151 Refresher

What constitutes a proof of n < m?
We just have to define what (<) means!
Q@ Vn.0<n

Q@ Vvmnn<m=n+1<m+1
This looks familiar!

data _<_ : Nat —Nat — Type where
LeqZ : (n : Nat) - 0 < n
LegS : (n : Nat) - (m : Nat) —
n <m—=(n + 1) < (m + 1)

LeqZ 3:0<3

November 9, 2021 15 /17



15-151 Refresher

What constitutes a proof of n < m?
We just have to define what (<) means!
Q@ Vn.0<n

Q@ Vmnn<m=n+1<m+1
This looks familiar!

data _<_ : Nat —Nat — Type where
LeqZ : (n : Nat) - 0 < n
LegS : (n : Nat) - (m : Nat) —
n <m—=(n + 1) < (m + 1)

LeqZ 3:0<3
LeqZ 43:0 <43

Hype for Types Dependent Types November 9, 2021 15 /17



15-151 Refresher

What constitutes a proof of n < m?
We just have to define what (<) means!
Q@ Vn.0<n

Q@ Vmnn<m=n+1<m+1
This looks familiar!

data _<_ : Nat —Nat — Type where
LeqZ : (n : Nat) - 0 < n
LegS : (n : Nat) - (m : Nat) —
n <m—=(n + 1) < (m + 1)

LeqZ 3:0<3
LeqZ 43:0<43
LegS 02 (LeqZ 2):1<3

Hype for Types Dependent Types November 9, 2021 15 /17



15-151 Refresher

What constitutes a proof of n < m?
We just have to define what (<) means!
Q@ Vn.0<n

Q@ Vmnn<m=n+1<m+1
This looks familiar!

data _<_ : Nat —Nat — Type where
LeqZ : (n : Nat) - 0 < n
LegS : (n : Nat) - (m : Nat) —
n <m—=(n + 1) < (m + 1)

LeqZ 3:0<3
LeqZ 43:0 <43
LegS 02 (LeqZ 2):1<3
(3,LeqS 02 (LeqZ 2)) : (n: Nat) x (1 < n)

Hype for Types Dependent Types November 9, 2021 15 /17



Some Sort of Contract

data NatList

Type where

Nil : NatList
Cons : Nat — NatList — NatList

data Sorted
NilSorted
SingSorted
ConsSorted

val search

NatList — Type where
Sorted Nil
(n : Nat) — Sorted (Cons n Nil)
(nm : Nat) — (xs : NatList) —
n < m—
Sorted (Cons m xs) —
Sorted (Cons n (Cons m xs))

Nat —

(xs : NatList) —
Sorted xs —

Nat option

Hype for Types Dependent Types November 9, 2021

16/17



A Type for Term Equality

If we can express a relation like less than or equal, how about equality?

=] & = E DA
Hype for Types Dependent Types



A Type for Term Equality

If we can express a relation like less than or equal, how about equality?
data Eq : (a : Type) - a— a— Type where
Refl : (a : Type) - (x : a) - Eq a x x

symm : (a : Type) (x y : a) > Eq a x y— Eq a y x
symm a x y (Refl A gq) = Refl A q

trans : (a : Type) (x y z : a) - Eq a x y— Eq a y z—
Eq a x z
trans a x y z (Refl A q) (Refl _ _) = Refl A q

plus_comm : (n m : Nat) — Eq Nat (n + m) (m + n)
inf_primes : (n : nat) —
(m : Nat) X ((m > n) x (Prime m))

Hype for Types Dependent Types November 9, 2021 17 /17



	Safe Printing
	Ok, so what?

