
Phantom Types and Generalized Algebraic Data Types

Hype for Types

September 13, 2022

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 1 / 1



Phantom Types

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 2 / 1



Cup of Tea?

fun cupOfTea (wallet : real) =

(wallet - 3.0, brew ())

val (wallet ’, tea) = cupOfTea 100.0

USD or GBP?

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 3 / 1



Cup of Tea?

fun cupOfTea (wallet : real) =

(wallet - 3.0, brew ())

val (wallet ’, tea) = cupOfTea 100.0

USD or GBP?

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 3 / 1



Cup of Tea?

fun cupOfTea (wallet : real) =

(wallet - 3.0, brew ())

val (wallet ’, tea) = cupOfTea 100.0

USD or GBP?

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 3 / 1



Tonnes of Fun

val fromGBP : real -> real = fn n => n * 1.27

val cupOfTeaGBP = cupOfTea o fromGBP

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 4 / 1



Fixes?

How can we fix this?

Vigilance

Linting/Style Checkers?

Types!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 5 / 1



Fixes?

How can we fix this?

Vigilance

Linting/Style Checkers?

Types!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 5 / 1



Fixes?

How can we fix this?

Vigilance

Linting/Style Checkers?

Types!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 5 / 1



First Cut

type usd = real

type gbp = real

val fromGBP : gbp -> usd

val cupOfTea : usd -> tea * usd

Oh no!
real = real.

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 6 / 1



First Cut

type usd = real

type gbp = real

val fromGBP : gbp -> usd

val cupOfTea : usd -> tea * usd

Oh no!
real = real.

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 6 / 1



Another Try

datatype usd = USD of real

datatype gbp = GBP of real

val fromGBP : gbp -> usd

val cupOfTea : usd -> tea * usd

Oh no!

How can we add, subtract, etc.? Don’t want to write:

val add_usd : usd * usd -> usd

val add_gbp : gbp * gbp -> gbp

(* etc. *)

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 7 / 1



Another Try

datatype usd = USD of real

datatype gbp = GBP of real

val fromGBP : gbp -> usd

val cupOfTea : usd -> tea * usd

Oh no!

How can we add, subtract, etc.? Don’t want to write:

val add_usd : usd * usd -> usd

val add_gbp : gbp * gbp -> gbp

(* etc. *)

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 7 / 1



Spooky

datatype usd = Junk1 (* will never use *)

datatype gbp = Junk2 (* will never use *)

datatype ’a wallet = Wallet of real

(* ^^ unused type parameter *)

val fromGBP : gbp wallet -> usd wallet

val cupOfTea : usd wallet -> tea * usd wallet

val + : ’a wallet * ’a wallet -> ’a wallet

val - : ’a wallet * ’a wallet -> ’a wallet

(* etc. *)

Phantom Type

Since the parameter ’a doesn’t appear in the definition of wallet, we call
wallet a phantom type.

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 8 / 1



Spooky

datatype usd = Junk1 (* will never use *)

datatype gbp = Junk2 (* will never use *)

datatype ’a wallet = Wallet of real

(* ^^ unused type parameter *)

val fromGBP : gbp wallet -> usd wallet

val cupOfTea : usd wallet -> tea * usd wallet

val + : ’a wallet * ’a wallet -> ’a wallet

val - : ’a wallet * ’a wallet -> ’a wallet

(* etc. *)

Phantom Type

Since the parameter ’a doesn’t appear in the definition of wallet, we call
wallet a phantom type.

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 8 / 1



Spooky

datatype usd = Junk1 (* will never use *)

datatype gbp = Junk2 (* will never use *)

datatype ’a wallet = Wallet of real

(* ^^ unused type parameter *)

val fromGBP : gbp wallet -> usd wallet

val cupOfTea : usd wallet -> tea * usd wallet

val + : ’a wallet * ’a wallet -> ’a wallet

val - : ’a wallet * ’a wallet -> ’a wallet

(* etc. *)

Phantom Type

Since the parameter ’a doesn’t appear in the definition of wallet, we call
wallet a phantom type.

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 8 / 1



Lo Hicimos!

How can we use it?

val ronWallet : usd wallet = Wallet 50.0

val steveWallet : gbp wallet = Wallet 42.0

val (ronWallet ’, tea) =

cupOfTea ronWallet

val (steveWallet ’, tea) =

cupOfTea steveWallet

(* TYPE ERROR *)

val (steveWallet ’, tea) =

cupOfTea (fromGBP steveWallet)

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 9 / 1



Pushing it Further

datatype (’a,’b) exchange = Exchange of real

val convert :

(’a,’b) exchange

-> ’a wallet -> ’b wallet =

fn Exchange rate =>

fn Wallet n => Wallet (rate * n)

val ex : (gbp ,usd) exchange = Exchange 1.27

val fromGBP = convert ex

(* : gbp wallet -> usd wallet *)

datatype cad = Junk3

val cadExchange : (usd ,cad) exchange = Exchange 1.33

val fromUsd = convert cadExchange

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 10 / 1



Pushing it Further

datatype (’a,’b) exchange = Exchange of real

val convert :

(’a,’b) exchange

-> ’a wallet -> ’b wallet =

fn Exchange rate =>

fn Wallet n => Wallet (rate * n)

val ex : (gbp ,usd) exchange = Exchange 1.27

val fromGBP = convert ex

(* : gbp wallet -> usd wallet *)

datatype cad = Junk3

val cadExchange : (usd ,cad) exchange = Exchange 1.33

val fromUsd = convert cadExchange

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 10 / 1



Key Point

Key Point

Type parameters can be “compile-time only”! They need not be used at
runtime.

We can use this to help our compiler check extra invariants.

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 11 / 1



GADTs

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 12 / 1



Arrays

signature ARRAY =

sig

type ’a t

val fromList : ’a list -> ’ a t

val fromInt : int -> bool t

val get : int -> ’a t -> ’a

end

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 13 / 1



First Try

structure Array :> ARRAY =

sig

datatype ’a t =

List of ’a list

| Int of int

val fromList = List

val fromInt = Int

(* get? *)

fun get i = fn

List xs => List.sub (xs,i)

| Int n => ((n >> i) & 1) > 0

end

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 14 / 1



First Try

structure Array :> ARRAY =

sig

datatype ’a t =

List of ’a list

| Int of int

val fromList = List

val fromInt = Int

(* get? *)

fun get i = fn

List xs => List.sub (xs,i)

| Int n => ((n >> i) & 1) > 0

end

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 14 / 1



Oh No

Type Error!
get : bool array -> bool

But we said it would have type ’a array -> ’a.
We have to give back an ’a in the Int branch, but cannot.
The only way to use the Int constructor is through fromInt, which
produces a bool array.
But the compiler doesn’t know that :(

Hmm

What if our compiler knew that if we match on Int, ’a must be bool?

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 15 / 1



Generalizing ADTs

An alternative syntax for ADTs

datatype ’a option =

SOME : ’a -> ’a option

| NONE : ’a option

datatype ’a list =

Nil : ’a list

| :: : ’a * ’a list -> ’a list

datatype ’a array =

List : ’a list -> ’a array

| Int : int -> ’a array

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 16 / 1



Generalizing ADTs

Just change the return type for Int!

datatype ’a array =

List : ’a list -> ’a array

| Int : int -> bool array

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 17 / 1



Nice

get typechecks now!

fun get i = fn

List xs => List.sub (xs ,i)

| Int n => ((n >> i) & 1) > 0

In the Int arm of the case, ’a gets refined to bool.

The compiler knows that Int : int -> bool array

So Int n : bool array

So it must be that ’a = bool

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 18 / 1



Exhaustiveness

val toString : char array -> string = fn

List xs => String.implode xs

| Int n => ???

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 19 / 1



Exhaustiveness

val toString : char array -> string = fn

List xs => String.implode xs

There’s no way to create a char array with the Int constructor!
This pattern match is actually exhaustive.

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 20 / 1



List Frustrations

val head : ’a list -> ’a = fn

x::xs => x

| [] => raise Fail "oop"

val zip : ’a list * ’b list -> (’a * ’b) list = fn

([] ,[]) => []

| (x::xs,y::ys) => (x,y)::zip (xs,ys)

| _ => raise Fail "oop"

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 21 / 1



Can we fix it?

Want to statically detect calling head on empty lists and zip on lists on
non-equal length
Thoughts?

What if the type checker knew how long a list was?

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 22 / 1



Can we fix it?

Want to statically detect calling head on empty lists and zip on lists on
non-equal length
Thoughts?
What if the type checker knew how long a list was?

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 22 / 1



Length Indexed Lists : First Try

What we’d really like:

datatype (’a,’len) list =

Nil : (’a,0) list

| :: : ’a * (’a,’len) list -> (’a,’len + 1) list

But 0 and 1 aren’t types :(

Workarounds?

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 23 / 1



Length Indexed Lists : First Try

What we’d really like:

datatype (’a,’len) list =

Nil : (’a,0) list

| :: : ’a * (’a,’len) list -> (’a,’len + 1) list

But 0 and 1 aren’t types :(
Workarounds?

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 23 / 1



Type Level Naturals

We need to encode the natural numbers into our type system!

(* Constructors could be anything *)

(* We just need a new type *)

datatype z = Junk of void

type ’n s = Junk of void (* same deal *)

Now we have a type that corresponds to each nat!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 24 / 1



Type Level Naturals

We need to encode the natural numbers into our type system!

(* Constructors could be anything *)

(* We just need a new type *)

datatype z = Junk of void

type ’n s = Junk of void (* same deal *)

Now we have a type that corresponds to each nat!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 24 / 1



Type Level Naturals

We need to encode the natural numbers into our type system!

(* Constructors could be anything *)

(* We just need a new type *)

datatype z = Junk of void

type ’n s = Junk of void (* same deal *)

Now we have a type that corresponds to each nat!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 24 / 1



Length Indexed Lists : Second Try

datatype (’a,’len) list =

Nil : (’a,z) list

| :: : ’a * (’a,’len) list -> (’a,’len s) list

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 25 / 1



List Frustrations Alleviated

Can we express the desired constraints on head and zip now?

val head : (’a,’n s) list -> ’a = fn

(x::xs) => x

val zip : (’a,’n) list * (’b, ’n) list ->

(’a * ’b,’n) list = fn

([] ,[]) => []

| (x::xs,y::ys) => (x,y)::zip (xs,ys)

All patterns are fully exhaustive!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 26 / 1



List Frustrations Alleviated

Can we express the desired constraints on head and zip now?

val head : (’a,’n s) list -> ’a = fn

(x::xs) => x

val zip : (’a,’n) list * (’b, ’n) list ->

(’a * ’b,’n) list = fn

([] ,[]) => []

| (x::xs,y::ys) => (x,y)::zip (xs,ys)

All patterns are fully exhaustive!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 26 / 1



List Frustrations Alleviated

Can we express the desired constraints on head and zip now?

val head : (’a,’n s) list -> ’a = fn

(x::xs) => x

val zip : (’a,’n) list * (’b, ’n) list ->

(’a * ’b,’n) list = fn

([] ,[]) => []

| (x::xs,y::ys) => (x,y)::zip (xs,ys)

All patterns are fully exhaustive!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 26 / 1



How great is this really?

val append : (’a,’n) list * (’a,’m) list ->

(’a,???) list

val filter : (’a -> bool) -> (’a,’n) list ->

(’a, ???) list

We need a much more powerful type system to express the types of
functions that alter list lengths in complex ways. We’ll get there!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 27 / 1



Pushing Type Nats Further

Any other data structures where statically tracking a number could prove
useful?

Red-Black Tress!
If we encode our invariants at the type level, we can guarantee any
functions on red-black trees cannot break them

All nodes are either red or black

The empty tree is black

All leaves are black

Red nodes have black children

Any path from a node to one of its descendant leaves has the same
number of black nodes

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 28 / 1



Pushing Type Nats Further

Any other data structures where statically tracking a number could prove
useful?
Red-Black Tress!

If we encode our invariants at the type level, we can guarantee any
functions on red-black trees cannot break them

All nodes are either red or black

The empty tree is black

All leaves are black

Red nodes have black children

Any path from a node to one of its descendant leaves has the same
number of black nodes

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 28 / 1



Pushing Type Nats Further

Any other data structures where statically tracking a number could prove
useful?
Red-Black Tress!
If we encode our invariants at the type level, we can guarantee any
functions on red-black trees cannot break them

All nodes are either red or black

The empty tree is black

All leaves are black

Red nodes have black children

Any path from a node to one of its descendant leaves has the same
number of black nodes

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 28 / 1



Red-Black Trees

datatype red = Junk of void

datatype black = Junk of void

datatype (’a,’color ,’n) tree =

Empty : (’a,black ,z) tree

| Red : (’a,black ,’n) tree *

(’a,black ,’n) tree *

’a ->

(’a,red ,’n) tree

| Black : (’a,’c1,’n) tree *

(’a,’c2 ,’n) tree *

’a ->

(’a,black ,’n s) tree

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 29 / 1


