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Phantom Types
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Cup of Tea?

fun cupOfTea (wallet : real) =

(wallet - 3.0, brew ())

val (wallet ’, tea) = cupOfTea 100.0

USD or GBP?
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Tonnes of Fun

val fromGBP : real -> real = fn n => n * 1.27

val cupOfTeaGBP = cupOfTea o fromGBP
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Fixes?

How can we fix this?

Vigilance

Linting/Style Checkers?

Types!
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First Cut

type usd = real

type gbp = real

val fromGBP : gbp -> usd

val cupOfTea : usd -> tea * usd

Oh no!
real = real.
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Another Try

datatype usd = USD of real

datatype gbp = GBP of real

val fromGBP : gbp -> usd

val cupOfTea : usd -> tea * usd

Oh no!

How can we add, subtract, etc.? Don’t want to write:

val add_usd : usd * usd -> usd

val add_gbp : gbp * gbp -> gbp

(* etc. *)
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Spooky

datatype usd = Junk1 (* will never use *)

datatype gbp = Junk2 (* will never use *)

datatype ’a wallet = Wallet of real

(* ^^ unused type parameter *)

val fromGBP : gbp wallet -> usd wallet

val cupOfTea : usd wallet -> tea * usd wallet

val + : ’a wallet * ’a wallet -> ’a wallet

val - : ’a wallet * ’a wallet -> ’a wallet

(* etc. *)

Phantom Type

Since the parameter ’a doesn’t appear in the definition of wallet, we call
wallet a phantom type.
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Lo Hicimos!

How can we use it?

val ronWallet : usd wallet = Wallet 50.0

val steveWallet : gbp wallet = Wallet 42.0

val (ronWallet ’, tea) =

cupOfTea ronWallet

val (steveWallet ’, tea) =

cupOfTea steveWallet

(* TYPE ERROR *)

val (steveWallet ’, tea) =

cupOfTea (fromGBP steveWallet)

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 9 / 1



Pushing it Further

datatype (’a,’b) exchange = Exchange of real

val convert :

(’a,’b) exchange

-> ’a wallet -> ’b wallet =

fn Exchange rate =>

fn Wallet n => Wallet (rate * n)

val ex : (gbp ,usd) exchange = Exchange 1.27

val fromGBP = convert ex

(* : gbp wallet -> usd wallet *)

datatype cad = Junk3

val cadExchange : (usd ,cad) exchange = Exchange 1.33

val fromUsd = convert cadExchange
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Key Point

Key Point

Type parameters can be “compile-time only”! They need not be used at
runtime.

We can use this to help our compiler check extra invariants.
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GADTs
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Arrays

signature ARRAY =

sig

type ’a t

val fromList : ’a list -> ’ a t

val fromInt : int -> bool t

val get : int -> ’a t -> ’a

end
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First Try

structure Array :> ARRAY =

sig

datatype ’a t =

List of ’a list

| Int of int

val fromList = List

val fromInt = Int

(* get? *)

fun get i = fn

List xs => List.sub (xs,i)

| Int n => ((n >> i) & 1) > 0

end
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Oh No

Type Error!
get : bool array -> bool

But we said it would have type ’a array -> ’a.
We have to give back an ’a in the Int branch, but cannot.
The only way to use the Int constructor is through fromInt, which
produces a bool array.
But the compiler doesn’t know that :(

Hmm

What if our compiler knew that if we match on Int, ’a must be bool?
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Generalizing ADTs

An alternative syntax for ADTs

datatype ’a option =

SOME : ’a -> ’a option

| NONE : ’a option

datatype ’a list =

Nil : ’a list

| :: : ’a * ’a list -> ’a list

datatype ’a array =

List : ’a list -> ’a array

| Int : int -> ’a array
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Generalizing ADTs

Just change the return type for Int!

datatype ’a array =

List : ’a list -> ’a array

| Int : int -> bool array
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Nice

get typechecks now!

fun get i = fn

List xs => List.sub (xs ,i)

| Int n => ((n >> i) & 1) > 0

In the Int arm of the case, ’a gets refined to bool.

The compiler knows that Int : int -> bool array

So Int n : bool array

So it must be that ’a = bool
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Exhaustiveness

val toString : char array -> string = fn

List xs => String.implode xs

| Int n => ???
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Exhaustiveness

val toString : char array -> string = fn

List xs => String.implode xs

There’s no way to create a char array with the Int constructor!
This pattern match is actually exhaustive.
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List Frustrations

val head : ’a list -> ’a = fn

x::xs => x

| [] => raise Fail "oop"

val zip : ’a list * ’b list -> (’a * ’b) list = fn

([] ,[]) => []

| (x::xs,y::ys) => (x,y)::zip (xs,ys)

| _ => raise Fail "oop"
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Can we fix it?

Want to statically detect calling head on empty lists and zip on lists on
non-equal length
Thoughts?

What if the type checker knew how long a list was?
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Length Indexed Lists : First Try

What we’d really like:

datatype (’a,’len) list =

Nil : (’a,0) list

| :: : ’a * (’a,’len) list -> (’a,’len + 1) list

But 0 and 1 aren’t types :(

Workarounds?
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Type Level Naturals

We need to encode the natural numbers into our type system!

(* Constructors could be anything *)

(* We just need a new type *)

datatype z = Junk of void

type ’n s = Junk of void (* same deal *)

Now we have a type that corresponds to each nat!
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Length Indexed Lists : Second Try

datatype (’a,’len) list =

Nil : (’a,z) list

| :: : ’a * (’a,’len) list -> (’a,’len s) list
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List Frustrations Alleviated

Can we express the desired constraints on head and zip now?

val head : (’a,’n s) list -> ’a = fn

(x::xs) => x

val zip : (’a,’n) list * (’b, ’n) list ->

(’a * ’b,’n) list = fn

([] ,[]) => []

| (x::xs,y::ys) => (x,y)::zip (xs,ys)

All patterns are fully exhaustive!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 26 / 1



List Frustrations Alleviated

Can we express the desired constraints on head and zip now?

val head : (’a,’n s) list -> ’a = fn

(x::xs) => x

val zip : (’a,’n) list * (’b, ’n) list ->

(’a * ’b,’n) list = fn

([] ,[]) => []

| (x::xs,y::ys) => (x,y)::zip (xs,ys)

All patterns are fully exhaustive!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 26 / 1



List Frustrations Alleviated

Can we express the desired constraints on head and zip now?

val head : (’a,’n s) list -> ’a = fn

(x::xs) => x

val zip : (’a,’n) list * (’b, ’n) list ->

(’a * ’b,’n) list = fn

([] ,[]) => []

| (x::xs,y::ys) => (x,y)::zip (xs,ys)

All patterns are fully exhaustive!

Hype for Types Phantom Types and Generalized Algebraic Data Types September 13, 2022 26 / 1



How great is this really?

val append : (’a,’n) list * (’a,’m) list ->

(’a,???) list

val filter : (’a -> bool) -> (’a,’n) list ->

(’a, ???) list

We need a much more powerful type system to express the types of
functions that alter list lengths in complex ways. We’ll get there!
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Pushing Type Nats Further

Any other data structures where statically tracking a number could prove
useful?

Red-Black Tress!
If we encode our invariants at the type level, we can guarantee any
functions on red-black trees cannot break them

All nodes are either red or black

The empty tree is black

All leaves are black

Red nodes have black children

Any path from a node to one of its descendant leaves has the same
number of black nodes
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Red-Black Trees

datatype red = Junk of void

datatype black = Junk of void

datatype (’a,’color ,’n) tree =

Empty : (’a,black ,z) tree

| Red : (’a,black ,’n) tree *

(’a,black ,’n) tree *

’a ->

(’a,red ,’n) tree

| Black : (’a,’c1,’n) tree *

(’a,’c2 ,’n) tree *

’a ->

(’a,black ,’n s) tree
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