Introduction and Lambda Calculus

Hype for Types

August 29, 2023

Hype for Types

Introduction and Lambda Calculus

August 29, 2023 1 / 23

э

-

A (1) > A (2) > A

Introduction

æ

< □ > < □ > < □ > < □ > < □ >

Welcome to Hype for Types!

- Instructors:
 - Runming Li (runmingl)
 - Sonya Simkin (ssimkin)
 - Yosef Alsuhaibani (yalsuhai)
 - Zach Battleman (zbattlem)
- Attendance
 - In general, you have to come to lecture to pass
 - Let us know if you need to miss a week
- Homework
 - Every lecture will have an associated homework
 - Graded on effort (not correctness)
 - If you spend more than an hour, please stop¹

¹Unless you're having fun!

Other Stuff

- Please join the Discord and Gradescope if you haven't
- We assume everyone has 150 level knowledge of functional programming and type systems
 - If you don't have this and feel really lost, talk to us after class (and a 150 head TA will bring you up to speed)

Motivation

æ

< □ > < □ > < □ > < □ > < □ >

There are many common classes of mistakes/bugs/errors in code:

https://xkcd.com/327/

(日)

There are many common classes of mistakes/bugs/errors in code:

• 1 + "hello"

https://xkcd.com/327/

(日)

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"
- fun f x = f x

https://xkcd.com/327/

э

(日)

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"
- fun f x = f x
- malloc(sizeof(int)); return;

https://xkcd.com/327/

- 4 回 ト 4 ヨ ト 4 ヨ ト

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"
- fun f x = f x
- malloc(sizeof(int)); return;
- free(A); free(A);

https://xkcd.com/327/

・ 何 ト ・ ヨ ト ・ ヨ ト

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"
- fun f x = f x
- malloc(sizeof(int)); return;
- free(A); free(A);
- A[len(A)]

https://xkcd.com/327/

・ 何 ト ・ ヨ ト ・ ヨ ト

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"
- fun f x = f x
- malloc(sizeof(int)); return;
- free(A); free(A);
- A[len(A)]
- @requires is_sorted(A)

https://xkcd.com/327/

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Types are... hype!

Types are *descriptions* of how some piece of data can be used.

² Foreshadowing: "a literary device in which a writer gives an advance hint of what is to come later in the story." *Wikipedia*, *"Foreshadowing*," *retrieved 30 Aug* 2022

Hype for Types

Introduction and Lambda Calculus

Types are *descriptions* of how some piece of data can be used.

Guiding Question

How can we use types to catch errors at compile-time?

² Foreshadowing: "a literary device in which a writer gives an advance hint of what is to come later in the story." *Wikipedia*, *"Foreshadowing*," *retrieved 30 Aug* 2022

Hype for Types

Types are *descriptions* of how some piece of data can be used.

Guiding Question

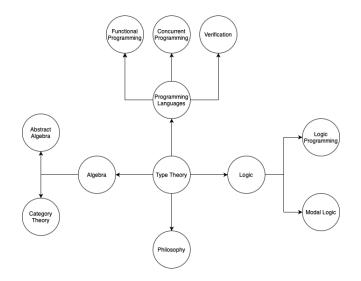
How can we use types to catch errors at compile-time?

Guiding Question

Can we use types for more than just bug-catching?²

² Foreshadowing: "a literary device in which a writer gives an advance hint of what is to come later in the story." *Wikipedia, "Foreshadowing," retrieved 30 Aug*: 2022

Type Theory at Large



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Goal of This Course

- We do not ask students to master the content as in an academic course
- We do not replace any academic courses
- We do not focus on depth, but rather focus on breath

Goal of This Course

- We do not ask students to master the content as in an academic course
- We do not replace any academic courses
- We do not focus on depth, but rather focus on breath
- We DO expect you to have fun
- We DO hope to spark your interest in PL theory and start pursuing coursework and/or research in adjacent areas after taking this course
- We DO want you to learn about different fascinating aspects of types that you would otherwise take advanced courses and/or read complicated academic papers to understand

Course Credit

- 3 unit, P/F
- For undergraduate, count towards 360 total units graduation requirement
- For MSCS, count towards 12 units "MSCS elective units"

You will see a lot of weird symbols in this class, please don't be intimated. We especially love λ .

< 1 k

э

Lambda Calculus

æ

< □ > < □ > < □ > < □ > < □ >

Building a tiny language

The *simply-typed lambda calculus* is simple. It only has four features³:

- Unit ("empty tuples")
- Booleans
- Tuples
- Functions

³which is a subset of Standard ML

Building a tiny language

The *simply-typed lambda calculus* is simple. It only has four features³:

- Unit ("empty tuples")
- Booleans
- Tuples
- Functions

Goal

To use STLC as a tool to study how type checker works.

³which is a subset of Standard ML

Expressions

е

We represent our expressions using a grammar:

e ::=	X	variable
	$\langle \rangle$	unit
	false	false boolean
	true	true boolean
	if e_1 then e_2 else e_3	boolean case analysis
	$\langle e_1, e_2 \rangle$	tuple
	fst(e)	first tuple element
	snd(e)	second tuple element
	λx : $ au$. e	function abstraction (lambda)
	$e_1 e_2$	function application

< □ > < 同 > < 回 > < 回 > < 回 >

æ

Types

Similarly, we define our types as follows:

$$\begin{array}{rrrr} \tau & ::= & \textbf{unit} \\ & \mid & \textbf{bool} \\ & \mid & \tau_1 \times \tau_2 \\ & \mid & \tau_1 \to \tau_2 \end{array}$$

æ

A D N A B N A B N A B N

Types

Similarly, we define our types as follows:

$$\begin{array}{rrrr} \tau & ::= & \textbf{unit} \\ & \mid & \textbf{bool} \\ & \mid & \tau_1 \times \tau_2 \\ & \mid & \tau_1 \to \tau_2 \end{array}$$

Million-dollar Question

How do we check if $e : \tau$?

3

- ∢ ⊒ →

▲ 同 ▶ → 三 ▶

Inference Rules

In logic, we use *inference rules* to state how facts follow from other facts.

 $\frac{\mathsf{premise}_1 \quad \mathsf{premise}_2 \quad \dots}{\mathsf{conclusion}}$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Inference Rules

In logic, we use *inference rules* to state how facts follow from other facts.

 $\frac{\text{premise}_1 \quad \text{premise}_2 \quad \dots}{\text{conclusion}}$

For example:

you a	re here you are h	iyped		
you	ı are hyped for typ	pes func	functions are values	
it's raining	x is outside	Socrates is a man	All men are mortal	
x is getting wet		Socrates is mortal		
	<i>n</i> is a number	f total	x valuable	
n	+1 is a number	fxv	valuable	

Typing Rules: First Attempt

Consider the judgement $e : \tau$ ("e has type τ "). Let's try to express some simple typing rules.

			e_1 : bool e_2 : τ e_3 : τ
$\langle angle$: unit	false : bool	true : bool	if e_1 then e_2 else e_3 : τ
e_1	: $\tau_1 e_2 : \tau_2$	$e: au_1 imes au_2$	$e: au_1 imes au_2$
$\langle e_1 \rangle$	$,e_2 angle$: $ au_1 imes au_2$	$\overline{fst(e)}$: $ au_1$	$\overline{snd(e)}$: $ au_2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Typing Rules: First Attempt

Consider the judgement $e: \tau$ ("e has type τ "). Let's try to express some simple typing rules.

$\overline{\langle angle : unit}$	false : bool	true : bool	$\frac{e_1: \text{bool} e_2: \tau e_3: \tau}{\text{if } e_1 \text{ then } e_2 \text{ else } e_3: \tau}$
e_1	: $\tau_1 e_2 : \tau_2$	$e: au_1 imes au_2$	$e: au_1 imes au_2$
$\langle e_1 \rangle$	$, e_2 \rangle : \tau_1 \times \tau_2$	$\overline{fst(e)}$: $ au_1$	$\overline{snd(e)}$: $ au_2$

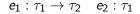
Question

How do we write rules for functions?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Typing Rules: Functions

Let's give it a shot.



 $e_1 e_2 : \tau_2$

Looks good so far...

イロト 不得下 イヨト イヨト 二日

Typing Rules: Functions

Let's give it a shot.

$$e_1:\tau_1\to\tau_2\quad e_2:\tau_1$$

 $e_1 e_2 : \tau_2$

Looks good so far...

 $e: \tau_2$ (?) $\overline{(\lambda x:\tau_1.\ e):\tau_1\to\tau_2}$

<日

<</p>

Typing Rules: Functions

Let's give it a shot.

$$e_1: \tau_1 \rightarrow \tau_2 \quad e_2: \tau_1$$

 $e_1 e_2 : \tau_2$

Looks good so far...

 $e: \tau_2$ (?) $\overline{(\lambda x:\tau_1.\ e):\tau_1\to\tau_2}$

Key Idea

Expressions only have types given a context!

< 回 > < 回 > < 回 >

Contexts

Intuition

If, given
$$x : \tau_1$$
, we know $e : \tau_2$, then $(\lambda x : \tau_1. e) : \tau_1 \rightarrow \tau_2$.

Therefore, we need a context (denoted Γ) which associates types with variables.

$$\frac{\Gamma, x: \tau_1 \vdash e: \tau_2}{\Gamma \vdash (\lambda x: \tau_1. \ e): \tau_1 \rightarrow \tau_2}$$

What types does some variable x have? It depends on the previous code!

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau}$$

э

4 2 5 4 2 5

All the rules!

 $\frac{\mathbf{x}:\tau\in\mathsf{\Gamma}}{\mathsf{\Gamma}\vdash\mathbf{x}\cdot\tau}\;(\mathrm{VAR})$ $\frac{1}{\Gamma \vdash \mathsf{false} : \mathsf{bool}} (\text{FALSE})$ $\overline{\Gamma \vdash \langle \rangle}$: **unit** (UNIT) $\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : \tau} (\text{IF})$ $\overline{\Gamma \vdash true : bool}$ (TRUE) $\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \langle e_1, e_2 \rangle : \tau_1 \times \tau_2}$ (TUP) $\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \mathbf{fst}(e) : \tau_1}$ (FST) $\Gamma \vdash \rho \cdot \tau_1 \vee \tau_0$ $\Gamma \times \cdot \pi \vdash \alpha \cdot \pi$

$$\frac{\Gamma + c : \tau_1 \times \tau_2}{\Gamma \vdash \mathsf{snd}(e) : \tau_2} \text{ (SND)} \qquad \frac{\Gamma, \chi : \tau_1 + c : \tau_2}{\Gamma \vdash (\lambda x : \tau_1 . e) : \tau_1 \to \tau_2} \text{ (ABS)}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 \; e_2 : \tau_2} \; (\text{APP})$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: what's the type?

Let's derive that

```
\cdot \vdash (\lambda x : \mathsf{unit.} \langle x, \mathsf{true} \rangle) \langle \rangle : \mathsf{unit} \times \mathsf{bool}
```

by using the rules.

3

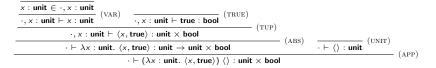
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example: what's the type?

Let's derive that

 $\cdot \vdash (\lambda x : \mathsf{unit.} \langle x, \mathsf{true} \rangle) \langle \rangle : \mathsf{unit} \times \mathsf{bool}$

by using the rules.



・ 何 ト ・ ヨ ト ・ ヨ ト

Example: what's the type?

Let's derive that

 $\cdot \vdash (\lambda x : \text{unit. } \langle x, \text{true} \rangle) \langle \rangle : \text{unit} \times \text{bool}$

by using the rules.



Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

H	lype	for	Tvc	bes

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Get Hype.

The Future is Bright

- How can you use basic algebra to manipulate types?
- How do types and programs relate to logical proofs?
- How can we automatically fold (and unfold) any recursive type?
- How can types allow us to do safe imperative programming?
- Can we make it so that programs that typecheck iff they're correct?