Polymorphism: What's the deal with 'a?

Hype for Types

October 13, 2023

Polymorphism

Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus
$\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}}$

Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus
$\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}}$

Notice how we must type annotate every lambda.
Let's write the identity function (assuming some reasonable base types).

Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus
$\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}}$

Notice how we must type annotate every lambda.
Let's write the identity function (assuming some reasonable base types). $i d=\lambda(x: N a t) x$
But this only works on Nats!
id true (* type error! *)

Identity

Recall lambda abstraction from the Simply Typed Lambda Calculus
$\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}}$

Notice how we must type annotate every lambda.
Let's write the identity function (assuming some reasonable base types).
$i d=\lambda(x: N a t) x$
But this only works on Nats!
id true (* type error! *)
$i d 2=\lambda(x:$ Bool $) x$
This seems really annoying $>$: (

What does SML do?

```
val id = fn (x : 'a) => x
val _ = id 1
val _ = id true
val _ = id "nice"
id : 'a -> 'a
```


What does SML do?

```
val id = fn (x : 'a) => x
val _ = id 1
val _ = id true
val _ = id "nice"
id : 'a -> 'a
But what is 'a? Is it a type?
```


What does SML do?

```
val id = fn (x : 'a) => x
val _ = id 1
val _ = id true
val _ = id "nice"
id : 'a -> 'a
But what is 'a? Is it a type?
If id 1 type checks then 1 : 'a???
```


Polymorphism

Intuitively, we'd like to interpret 'a -> 'a as "for all 'a, 'a -> 'a" The "for all" is implicit.
This is great for programming, but confusing to formalize.
Let's make it explicit!
' $\mathrm{a}->$ ' $\mathrm{a} \Longrightarrow \forall a . a \rightarrow a$
The ticks are no longer needed, as we've explicitly bound a as a type variable.

Polymorphism

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x: a) x$, but once again the type variable is being bound implicitly.

Polymorphism

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x: a) x$, but once again the type variable is being bound implicitly.
Let's bind it explicitly!
$\Lambda(a:$ Type $) \lambda(x: a) x: \forall a . a \rightarrow a$

Polymorphism

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x: a) x$, but once again the type variable is being bound implicitly.
Let's bind it explicitly!
$\Lambda(a:$ Type $) \lambda(x: a) x: \forall a . a \rightarrow a$
How do we use this?

Polymorphism

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x: a) x$, but once again the type variable is being bound implicitly.
Let's bind it explicitly!
$\Lambda(a:$ Type $) \lambda(x: a) x: \forall a . a \rightarrow a$
How do we use this?
$(\Lambda(a:$ Type $) \lambda(x: a) x)[N a t] \Longrightarrow \lambda(x: N a t) x$

System F

The polymorphic lambda calculus we've developed is called System F. Let's write a grammar!

System F

The polymorphic lambda calculus we've developed is called System F. Let's write a grammar!

$$
\begin{aligned}
e & ::= \\
& \\
& \\
& \lambda(x: \tau) e \\
& \\
& \\
& \\
& \\
& \\
& e_{1} e_{2}[\tau] \\
\tau(:= & t \\
\tau & \\
& \\
& \\
& \\
& \\
& \\
& \forall t . \tau
\end{aligned}
$$

term variable term abstraction type abstraction term application type application
type variable function type
polymorphic type

System F

And some inference rules!

System F

And some inference rules!
$\frac{t \in \Delta}{\Delta \vdash t \text { type }}$
$\frac{\Delta \vdash \tau_{1} \text { type } \Delta \vdash \tau_{2} \text { type }}{\Delta \vdash \tau_{1} \rightarrow \tau_{2} \text { type }}$
$\frac{\Delta, t \vdash \tau \text { type }}{\Delta \vdash \forall t . \tau \text { type }}$

System F

And some inference rules!

$$
\begin{gathered}
\frac{t \in \Delta}{\Delta \vdash t \text { type }} \quad \frac{\Delta \vdash \tau_{1} \text { type } \Delta \vdash \tau_{2} \text { type }}{\Delta \vdash \tau_{1} \rightarrow \tau_{2} \text { type }} \frac{\Delta, t \vdash \tau \text { type }}{\Delta \vdash \forall t . \tau \text { type }} \\
\frac{x: \tau \in \Gamma}{\Delta ; \Gamma \vdash x: \tau} \quad \frac{\Delta ; \Gamma, x: \tau \vdash e: \tau^{\prime}}{\Delta ; \Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}} \\
\frac{\Delta, t ; \Gamma \vdash e: \tau}{\Delta ; \Gamma \vdash \Lambda(t: \text { Type }) e: \forall t . \tau} \quad \frac{\Delta ; \Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Delta ; \Gamma \vdash e_{2}: \tau}{\Delta ; \Gamma \vdash e_{1} e_{2}: \tau^{\prime}} \\
\frac{\Delta ; \Gamma \vdash e: \forall t . \tau \quad \Delta \vdash \tau^{\prime} \text { type }}{\Delta ; \Gamma \vdash e\left[\tau^{\prime}\right]: \tau\left[\tau^{\prime} / t\right]}
\end{gathered}
$$

System F

And some inference rules!

$$
\begin{gathered}
\frac{t \in \Delta}{\Delta \vdash t \text { type }} \frac{\Delta \vdash \tau_{1} \text { type } \Delta \vdash \tau_{2} \text { type }}{\Delta \vdash \tau_{1} \rightarrow \tau_{2} \text { type }} \frac{\Delta, t \vdash \tau \text { type }}{\Delta \vdash \forall t . \tau \text { type }} \\
\frac{x: \tau \in \Gamma}{\Delta ; \Gamma \vdash x: \tau} \quad \frac{\Delta ; \Gamma, x: \tau \vdash e: \tau^{\prime}}{\Delta ; \Gamma \vdash \lambda(x: \tau) e: \tau \rightarrow \tau^{\prime}} \\
\frac{\Delta, t ; \Gamma \vdash e: \tau}{\Delta ; \Gamma \vdash \Lambda(t: \text { Type }) e: \forall t . \tau} \quad \frac{\Delta ; \Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Delta ; \Gamma \vdash e_{2}: \tau}{\Delta ; \Gamma \vdash e_{1} e_{2}: \tau^{\prime}} \\
\frac{\Delta ; \Gamma \vdash e: \forall t . \tau}{\Delta ; \Gamma \vdash e\left[\tau^{\prime}\right]: \tau\left[\tau^{\prime} / t\right]}
\end{gathered}
$$

Question

Do we need anything else? What about product types? Sum types?

Some F-ing Functions

$$
\text { swap : } \forall a b c .(a \rightarrow b \rightarrow c) \rightarrow(b \rightarrow a \rightarrow c)=
$$

Some F-ing Functions

$$
\begin{gathered}
\text { swap : } \forall a b c .(a \rightarrow b \rightarrow c) \rightarrow(b \rightarrow a \rightarrow c)= \\
\Lambda(a b c: \operatorname{Type}) \lambda(f: a \rightarrow b \rightarrow c) \lambda(x: b) \lambda(y: a) f y x
\end{gathered}
$$

Some F-ing Functions

$$
\begin{gathered}
\text { swap : } \forall a b c .(a \rightarrow b \rightarrow c) \rightarrow(b \rightarrow a \rightarrow c)= \\
\Lambda(a b c: \text { Type }) \lambda(f: a \rightarrow b \rightarrow c) \lambda(x: b) \lambda(y: a) f y x \\
\text { compose }: \forall a b c .(a \rightarrow b) \rightarrow(b \rightarrow c) \rightarrow(a \rightarrow c)=
\end{gathered}
$$

Some F-ing Functions

$$
\begin{gathered}
\text { swap : } \forall a b c .(a \rightarrow b \rightarrow c) \rightarrow(b \rightarrow a \rightarrow c)= \\
\Lambda(a b c: \text { Type }) \lambda(f: a \rightarrow b \rightarrow c) \lambda(x: b) \lambda(y: a) f y x \\
\text { compose }: \forall a b c .(a \rightarrow b) \rightarrow(b \rightarrow c) \rightarrow(a \rightarrow c)= \\
\Lambda(a b c: \text { Type }) \lambda(f: a \rightarrow b) \lambda(g: b \rightarrow c) \lambda(x: a) g(f x)
\end{gathered}
$$

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F ?
Is 'a -> 'a always really $\forall a . a \rightarrow a$?

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F ? Is 'a $->$ 'a always really $\forall a . a \rightarrow a$?
Consider:

$$
\text { fun hmm (id : 'a -> 'a) }=(i d \text { 1, id true) }
$$

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F ? Is 'a $->$ 'a always really $\forall a . a \rightarrow a$?
Consider:

$$
\text { fun } h m m(i d: \quad \text { 'a }->\text { 'a) }=(i d \text { 1, id true) }
$$

Type error! In SML, big lambdas can only be present at declarations, not arbitrarily inside expressions.
Our function here is equivalent to:

$$
h m m=\Lambda(a: \text { Type }) \lambda(\text { id }: a \rightarrow a)(\text { id } 1, \text { id true })
$$

Which is not the same as:

$$
h m m=\lambda(i d: \forall a . a \rightarrow a)(i d[i n t] 1, i d[b o o l] \text { true })
$$

Why? Because type inference for System F is undecidable!

What about exists?

If we can express "for all" as a type, can we express "there exists" as a type?

What about exists?

If we can express "for all" as a type, can we express "there exists" as a type?
$\forall t . t \rightarrow t$ means "for any type t : if you give me a t , l'll give you a t " So $\exists t . t \rightarrow t$ should probably mean "there is some specific type t, and if you give me that t, l'll give you a t "

What about exists?

If we can express "for all" as a type, can we express "there exists" as a type?
$\forall t . t \rightarrow t$ means "for any type t : if you give me a t , l'll give you a t "
So $\exists t . t \rightarrow t$ should probably mean "there is some specific type t, and if you give me that t, l'll give you a t "

Question

Does this sound similar to anything in SML?

Existentialism == Modules!

$$
\begin{aligned}
& \text { signature } \mathrm{S}= \\
& \text { sig } \\
& \text { type } \mathrm{t} \\
& \begin{array}{l}
\text { val } \mathrm{x} \\
\text { val }: \\
\mathrm{f}
\end{array} \mathrm{t} \\
& \text { end }
\end{aligned}
$$

is basically equivalent to:

$$
\exists t .\{x: t, f: t \rightarrow t\}
$$

or even more simply:

$$
\exists t . t \times(t \rightarrow t)
$$

Existentialism == Modules!

$$
\begin{aligned}
& \text { signature } \mathrm{S}= \\
& \text { sig } \\
& \text { type } \mathrm{t} \\
& \begin{array}{l}
\text { val } \mathrm{x} \\
\text { val }: \\
\mathrm{f}
\end{array} \mathrm{t} \\
& \text { end }
\end{aligned}
$$

is basically equivalent to:

$$
\exists t .\{x: t, f: t \rightarrow t\}
$$

or even more simply:

$$
\exists t . t \times(t \rightarrow t)
$$

Main Idea
We use signatures to represent existential types!

Existentialism == Modules!

Question

What is a value of type $\exists t . \tau$?

Existentialism == Modules!

Question

What is a value of type $\exists t . \tau$?
Answer: A module!

Existentialism == Modules!

Question

What is a value of type $\exists t . \tau$?
Answer: A module!

$$
\begin{aligned}
& \text { structure } M: S= \\
& \text { struct } \\
& \text { type } t=\text { int } \\
& \text { val } x=150 \\
& \text { val } f=f n x \Rightarrow x+1
\end{aligned}
$$

is a value of type $\exists t .\{x: t, f: t \rightarrow t\}$

Existentialism == Modules!

To unpack a structure, use the open keyword!

Existentialism == Modules!

To unpack a structure, use the open keyword!
open M gives me:

- a type t
- a value of type t
- a value of type $t->t$

Existentialism == Modules!

To unpack a structure, use the open keyword!
open M gives me:

- a type t
- a value of type t
- a value of type t-> t

In other words, I have a type t and a value of type $t *(t->t)$ (Remember the type of M was $\exists t . t \times(t \rightarrow t)$)

Existentialism == Modules!

To unpack a structure, use the open keyword!
open M gives me:

- a type t
- a value of type t
- a value of type t-> t

In other words, I have a type t and a value of type t * (t -> t) (Remember the type of M was $\exists t . t \times(t \rightarrow t)$)

Main Idea

opening a value (module) of type $\exists t . \tau$ gives us a type t and a value of type τ

Typechecking Rules

$\frac{\Delta, t \vdash \tau \text { type }}{\Delta \vdash \exists t . \tau \text { type }}$

$$
\frac{\Delta ; \Gamma \vdash e:[\rho / t] \tau \quad \Delta \vdash \rho \text { type }}{\Delta ; \Gamma \vdash \text { struct type } t=\rho \text { in } e: \exists t . \tau}
$$

$$
\frac{\Delta ; \Gamma \vdash M: \exists t \cdot \tau \quad \Delta, t ; \Gamma, x: \tau \vdash e: \tau^{\prime} \quad \Delta \vdash \tau^{\prime} \text { type }}{\Delta ; \Gamma \vdash \text { open } M \text { as } t, x \text { in } e: \tau^{\prime}}
$$

Example: Stacks!

signature $\operatorname{STACK}=$

```
sig
    type t
```

 val empty : t
 val push : int \(->\) t \(\rightarrow\) t
 val pop : t \(\rightarrow\) (int \(*\) t) option
 end
 structure ListStack : STACK =
struct
type $\mathrm{t}=$ int list
val empty $=$ []
fun push x xs $=x$: $x s$
fun pop [] = NONE
$\mid \operatorname{pop}(x:: x s)=\operatorname{SOME}(x, x s)$
end

Example: Stacks!

Stack $=$

Example: Stacks!

Stack $=$
$\exists t .\{$ empty : t, push : int $\rightarrow t \rightarrow t$, pop : $t \rightarrow($ int $\times t)$ option $\}$

ListStack : Stack =

Example: Stacks!

Stack $=$

$\exists t .\{$ empty : t, push : int $\rightarrow t \rightarrow t$, pop : $t \rightarrow($ int $\times t)$ option $\}$

$$
\begin{gathered}
\text { ListStack }: \text { Stack }= \\
\text { struct type } t=\text { int list in } \\
\{\text { empty }=\text { Nil, } \\
\text { push }=\text { Cons, } \\
\text { pop }=\ldots\}
\end{gathered}
$$

What about functors?

```
signature \(\operatorname{STACK}=\)
    sig
        type t
        val empty : t
        val push : int \(->\mathrm{t} \rightarrow \mathrm{t}\)
        val pop : t \(\rightarrow\) (int * t) option
    end
```

functor MkDoubleStack (S : STACK) : STACK =
struct
type $\mathrm{t}=\mathrm{S} . \mathrm{t}$
val empty $=$ S.empty
fun push x s $=$ S.push x (S.push x s)
val pop $=$ S.pop
end

What about functors?

MkDoubleStack : Stack \rightarrow Stack $=$

What about functors?

MkDoubleStack : Stack \rightarrow Stack $=$ $\lambda(S: S t a c k)$.
open S as t^{\prime}, s in

What about functors?

$$
\begin{gathered}
\text { MkDoubleStack : Stack } \rightarrow \text { Stack }= \\
\lambda(S: \text { Stack }) \\
\text { open } S \text { as } t^{\prime}, s \text { in } \\
\text { struct type } t=t^{\prime} \text { in } \\
\{\text { empty }=\text { s.empty } \\
\text { push }=\lambda(x: \text { int }) .(\text { s.push } x) \circ(\text { s.push } x) \\
\text { pop }=s . p o p\}
\end{gathered}
$$

We don't need no type constructors (except \forall and \rightarrow)

Question
Can we encode $A \times B$ in System F ?

We don't need no type constructors (except \forall and \rightarrow)

Question

Can we encode $A \times B$ in System F ?
Answer: Yes! But How?

We don't need no type constructors (except \forall and \rightarrow)

Question

Can we encode $A \times B$ in System F?
Answer: Yes! But How?

What can you do with a value of type $A \times B$?

We don't need no type constructors (except \forall and \rightarrow)

Question

Can we encode $A \times B$ in System F?
Answer: Yes! But How?

What can you do with a value of type $A \times B$?
If we have a function that requires a value of type A and a value of type B, we can give it arguments!

We don't need no type constructors (except \forall and \rightarrow)

Question

Can we encode $A \times B$ in System F ?
Answer: Yes! But How?

What can you do with a value of type $A \times B$?
If we have a function that requires a value of type A and a value of type B, we can give it arguments!

$$
A \times B=\forall R .(A \rightarrow B \rightarrow R) \rightarrow R
$$

Product Types in System F

$$
A \times B=\forall R .(A \rightarrow B \rightarrow R) \rightarrow R
$$

Product Types in System F

$$
\begin{array}{r}
A \times B=\forall R \cdot(A \rightarrow B \rightarrow R) \rightarrow R \\
\text { pair }: \forall A B \cdot A \rightarrow B \rightarrow A \times B= \\
\Lambda(A B) \lambda(x: A) \lambda(y: B) \wedge(R) \lambda(f: A \rightarrow B \rightarrow R) f x y
\end{array}
$$

Product Types in System F

$$
\begin{gathered}
A \times B=\forall R \cdot(A \rightarrow B \rightarrow R) \rightarrow R \\
\text { pair }: \forall A B \cdot A \rightarrow B \rightarrow A \times B= \\
\Lambda(A B) \lambda(x: A) \lambda(y: B) \wedge(R) \lambda(f: A \rightarrow B \rightarrow R) f x y \\
\text { fst }: \forall A B \cdot A \times B \rightarrow A= \\
\wedge(A B) \lambda(p: A \times B) p[A](\lambda(x: A) \lambda(y: B) x)
\end{gathered}
$$

Product Types in System F

$$
\begin{gathered}
A \times B=\forall R \cdot(A \rightarrow B \rightarrow R) \rightarrow R \\
\text { pair }: \forall A B \cdot A \rightarrow B \rightarrow A \times B= \\
\wedge(A B) \lambda(x: A) \lambda(y: B) \wedge(R) \lambda(f: A \rightarrow B \rightarrow R) f \times y \\
\text { fst }: \forall A B \cdot A \times B \rightarrow A= \\
\wedge(A B) \lambda(p: A \times B) p[A](\lambda(x: A) \lambda(y: B) x) \\
\text { snd }: \forall A B \cdot A \times B \rightarrow B= \\
\wedge(A B) \lambda(p: A \times B) p[B](\lambda(x: A) \lambda(y: B) y)
\end{gathered}
$$

Sum Types?

What can we do with a value of type $A+B$?

Sum Types?

What can we do with a value of type $A+B$?
If we can a function that takes an A and a function that takes a B, we can definitely provide an argument to one of them.

Sum Types?

What can we do with a value of type $A+B$?
If we can a function that takes an A and a function that takes a B, we can definitely provide an argument to one of them.

$$
A+B=\forall R .(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R
$$

Sum Types

$$
A+B=\forall R .(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R
$$

Sum Types

$$
\begin{gathered}
A+B=\forall R \cdot(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R \\
\text { InjectLeft }: \forall A B \cdot A \rightarrow A+B= \\
\wedge(A B) \lambda(x: A) \wedge(R) \lambda(\text { left }: A \rightarrow R) \lambda(\text { right }: B \rightarrow R) \text { left } x
\end{gathered}
$$

Sum Types

$$
A+B=\forall R .(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R
$$

InjectLeft : $\forall A B . A \rightarrow A+B=$
$\Lambda(A B) \lambda(x: A) \Lambda(R) \lambda($ left : $A \rightarrow R) \lambda($ right $: B \rightarrow R)$ left x InjectRight: $\forall A B \cdot B \rightarrow A+B=$
$\Lambda(A B) \lambda(x: A) \wedge(R) \lambda($ left $: A \rightarrow R) \lambda($ right $: B \rightarrow R)$ right x

Sum Types

$$
\begin{gathered}
A+B=\forall R .(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R \\
\text { InjectLeft }: \forall A B \cdot A \rightarrow A+B= \\
\wedge(A B) \lambda(x: A) \wedge(R) \lambda(\text { left }: A \rightarrow R) \lambda(\text { right }: B \rightarrow R) \text { left } x \\
\text { InjectRight }: \forall A B \cdot B \rightarrow A+B= \\
\wedge(A B) \lambda(x: A) \wedge(R) \lambda(\text { left }: A \rightarrow R) \lambda(\text { right }: B \rightarrow R) \text { right } x
\end{gathered}
$$

Question

What about case?

Sum Types

$$
\begin{gathered}
A+B=\forall R .(A \rightarrow R) \rightarrow(B \rightarrow R) \rightarrow R \\
\text { InjectLeft }: \forall A B \cdot A \rightarrow A+B= \\
\wedge(A B) \lambda(x: A) \wedge(R) \lambda(\text { left }: A \rightarrow R) \lambda(\text { right }: B \rightarrow R) \text { left } x \\
\text { InjectRight }: \forall A B \cdot B \rightarrow A+B= \\
\wedge(A B) \lambda(x: A) \wedge(R) \lambda(\text { left }: A \rightarrow R) \lambda(\text { right }: B \rightarrow R) \text { right } x
\end{gathered}
$$

Question

What about case?
Answer: An encoded value of type $A+B$ is already a case!

