
Substructural Logic
(Linear Logic and Linear Type Systems)

Hype for Types

October 3, 2023

Hype for Types Substructural Logic October 3, 2023 1 / 29

What We’ll Talk About

What it means for a logic to be “substructural”

A case study of a particular substructural logic (linear logic)

How to make malloc and free safe

What it looks like to code in a language with resource-aware types

Hype for Types Substructural Logic October 3, 2023 2 / 29

What We’ll Talk About

What it means for a logic to be “substructural”

A case study of a particular substructural logic (linear logic)

How to make malloc and free safe

What it looks like to code in a language with resource-aware types

Hype for Types Substructural Logic October 3, 2023 2 / 29

What We’ll Talk About

What it means for a logic to be “substructural”

A case study of a particular substructural logic (linear logic)

How to make malloc and free safe

What it looks like to code in a language with resource-aware types

Hype for Types Substructural Logic October 3, 2023 2 / 29

What We’ll Talk About

What it means for a logic to be “substructural”

A case study of a particular substructural logic (linear logic)

How to make malloc and free safe

What it looks like to code in a language with resource-aware types

Hype for Types Substructural Logic October 3, 2023 2 / 29

Substructural Logic

Hype for Types Substructural Logic October 3, 2023 3 / 29

She Sub on my Structure

The constructive logic we have been working with so far has the following
admissible rules, which we call “structural properties” of the logic:

Γ ⊢ C

Γ,A ⊢ C
(Weak)

Γ,A,A ⊢ C

Γ,A ⊢ C
(Cntr)

Γ,A,B ⊢ C

Γ,B,A ⊢ C
(Exch)

Hype for Types Substructural Logic October 3, 2023 4 / 29

She Sub on my Structure

What happens if you remove some of these structural properties?

You
would get a new logical system!

Affine Logic: no contraction

Linear Logic: no weakening or contraction

Ordered Logic: no weakening, contraction, or exchange

Question

What are the consequences of not having these structural properties?

Today, we’ll be focusing on linear logic, and how we can use it to
implement a memory-safe version of C0.

Hype for Types Substructural Logic October 3, 2023 5 / 29

She Sub on my Structure

What happens if you remove some of these structural properties? You
would get a new logical system!

Affine Logic: no contraction

Linear Logic: no weakening or contraction

Ordered Logic: no weakening, contraction, or exchange

Question

What are the consequences of not having these structural properties?

Today, we’ll be focusing on linear logic, and how we can use it to
implement a memory-safe version of C0.

Hype for Types Substructural Logic October 3, 2023 5 / 29

She Sub on my Structure

What happens if you remove some of these structural properties? You
would get a new logical system!

Affine Logic: no contraction

Linear Logic: no weakening or contraction

Ordered Logic: no weakening, contraction, or exchange

Question

What are the consequences of not having these structural properties?

Today, we’ll be focusing on linear logic, and how we can use it to
implement a memory-safe version of C0.

Hype for Types Substructural Logic October 3, 2023 5 / 29

She Sub on my Structure

What happens if you remove some of these structural properties? You
would get a new logical system!

Affine Logic: no contraction

Linear Logic: no weakening or contraction

Ordered Logic: no weakening, contraction, or exchange

Question

What are the consequences of not having these structural properties?

Today, we’ll be focusing on linear logic, and how we can use it to
implement a memory-safe version of C0.

Hype for Types Substructural Logic October 3, 2023 5 / 29

She Sub on my Structure

What happens if you remove some of these structural properties? You
would get a new logical system!

Affine Logic: no contraction

Linear Logic: no weakening or contraction

Ordered Logic: no weakening, contraction, or exchange

Question

What are the consequences of not having these structural properties?

Today, we’ll be focusing on linear logic, and how we can use it to
implement a memory-safe version of C0.

Hype for Types Substructural Logic October 3, 2023 5 / 29

She Sub on my Structure

What happens if you remove some of these structural properties? You
would get a new logical system!

Affine Logic: no contraction

Linear Logic: no weakening or contraction

Ordered Logic: no weakening, contraction, or exchange

Question

What are the consequences of not having these structural properties?

Today, we’ll be focusing on linear logic, and how we can use it to
implement a memory-safe version of C0.

Hype for Types Substructural Logic October 3, 2023 5 / 29

She Sub on my Structure

What happens if you remove some of these structural properties? You
would get a new logical system!

Affine Logic: no contraction

Linear Logic: no weakening or contraction

Ordered Logic: no weakening, contraction, or exchange

Question

What are the consequences of not having these structural properties?

Today, we’ll be focusing on linear logic, and how we can use it to
implement a memory-safe version of C0.

Hype for Types Substructural Logic October 3, 2023 5 / 29

Linear Logic

Hype for Types Substructural Logic October 3, 2023 6 / 29

Is Logic Logical?

The moon is made of green cheese. Therefore, you come to hype
for types today.

Question

Is this logical?

Hype for Types Substructural Logic October 3, 2023 7 / 29

Different Interpretation of Implication

Constructive logic interprets A ⇒ B as “If you give me A is true, then I
give you B is true”.
But what it really says is “If you give me as many copy of A as I need,
then I give you B is true”.

Idea

The problem of previous example is that to prove the conclusion we only
need zero copies of the assumption, hence lacking “relevance”.

Idea

We need a logic that forces relevance.

Hype for Types Substructural Logic October 3, 2023 8 / 29

Different Interpretation of Implication

Constructive logic interprets A ⇒ B as “If you give me A is true, then I
give you B is true”.
But what it really says is “If you give me as many copy of A as I need,
then I give you B is true”.

Idea

The problem of previous example is that to prove the conclusion we only
need zero copies of the assumption, hence lacking “relevance”.

Idea

We need a logic that forces relevance.

Hype for Types Substructural Logic October 3, 2023 8 / 29

Different Interpretation of Implication

Constructive logic interprets A ⇒ B as “If you give me A is true, then I
give you B is true”.
But what it really says is “If you give me as many copy of A as I need,
then I give you B is true”.

Idea

The problem of previous example is that to prove the conclusion we only
need zero copies of the assumption, hence lacking “relevance”.

Idea

We need a logic that forces relevance.

Hype for Types Substructural Logic October 3, 2023 8 / 29

Malloc is Scary...

Consider the following C code:

1 int main () {

2 char *str;

3 str = (char *) malloc (13);

4 strcpy(str , "hypefortypes");

5 free(str);

6 return (0);

7 }

In C, we have to make sure we allocate and deallocate every memory cell
exactly once.

Question

Is there a way to make our types guarantee correctness?

Hype for Types Substructural Logic October 3, 2023 9 / 29

Malloc is Scary...

Consider the following C code:

1 int main () {

2 char *str;

3 str = (char *) malloc (13);

4 strcpy(str , "hypefortypes");

5 free(str);

6 return (0);

7 }

In C, we have to make sure we allocate and deallocate every memory cell
exactly once.

Question

Is there a way to make our types guarantee correctness?

Hype for Types Substructural Logic October 3, 2023 9 / 29

The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be persistent, but rather ephemeral.

Persistence is due to implicit structural rules: weakening and contraction.

Hype for Types Substructural Logic October 3, 2023 10 / 29

The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be persistent, but rather ephemeral.

Persistence is due to implicit structural rules: weakening and contraction.

Hype for Types Substructural Logic October 3, 2023 10 / 29

The Problem With Constructive Logic

In “normal” constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be persistent, but rather ephemeral.

Persistence is due to implicit structural rules: weakening and contraction.

Hype for Types Substructural Logic October 3, 2023 10 / 29

Weakening

1 int main() {

2 int *x = (int *) malloc(sizeof(int));

3 *x = 3;

4 return 0;

5 }

Weakening: we can “drop” assumptions

Γ ⊢ e : τ

Γ, x : τ ′ ⊢ e : τ
(Weak)

Hype for Types Substructural Logic October 3, 2023 11 / 29

Weakening

1 int main() {

2 int *x = (int *) malloc(sizeof(int));

3 *x = 3;

4 return 0;

5 }

Weakening: we can “drop” assumptions

Γ ⊢ e : τ

Γ, x : τ ′ ⊢ e : τ
(Weak)

Hype for Types Substructural Logic October 3, 2023 11 / 29

Contraction

1 void f(int *x) {

2 free(x);

3 }

4

5 int main() {

6 int *x = (int *) malloc(sizeof(int));

7 *x = 3;

8 f(x);

9 f(x);

10 return 0;

11 }

Contraction: we can “duplicate” assumptions

Γ, x1 : τ, x2 : τ ⊢ e : τ ′

Γ, x : τ ⊢ [x , x/x1, x2]e : τ ′
(Cntr)

Hype for Types Substructural Logic October 3, 2023 12 / 29

Contraction

1 void f(int *x) {

2 free(x);

3 }

4

5 int main() {

6 int *x = (int *) malloc(sizeof(int));

7 *x = 3;

8 f(x);

9 f(x);

10 return 0;

11 }

Contraction: we can “duplicate” assumptions

Γ, x1 : τ, x2 : τ ⊢ e : τ ′

Γ, x : τ ⊢ [x , x/x1, x2]e : τ ′
(Cntr)

Hype for Types Substructural Logic October 3, 2023 12 / 29

Introduction to Linear Logic

In linear logic, we have neither weakening nor contraction.

Requirement that we use each piece of data exactly once - no
duplication, no dropping

Comes with an inherent idea of “resources” that are used up

Allows us to write safe, stateful (imperative!) programs

Hype for Types Substructural Logic October 3, 2023 13 / 29

The Linear Rules

Hype for Types Substructural Logic October 3, 2023 14 / 29

Identity

Constructive Logic

A ∈ Γ

Γ ⊢ A
(Hyp)

Linear Logic

A ⊢ A
(Hyp)

Intuition

“Given A and nothing else, we can use up A”

Hype for Types Substructural Logic October 3, 2023 15 / 29

Identity

Constructive Logic

A ∈ Γ

Γ ⊢ A
(Hyp)

Linear Logic

A ⊢ A
(Hyp)

Intuition

“Given A and nothing else, we can use up A”

Hype for Types Substructural Logic October 3, 2023 15 / 29

Identity

Constructive Logic

A ∈ Γ

Γ ⊢ A
(Hyp)

Linear Logic

A ⊢ A
(Hyp)

Intuition

“Given A and nothing else, we can use up A”

Hype for Types Substructural Logic October 3, 2023 15 / 29

Conjunction

Constructive Logic

Γ ⊢ A1 Γ ⊢ A2

Γ ⊢ A1 ∧ A2
(∧I)

Γ ⊢ A1 ∧ A2

Γ ⊢ A1
(∧E1)

Γ ⊢ A1 ∧ A2

Γ ⊢ A2
(∧E2)

Linear Logic

∆1 ⊢ A1 ∆2 ⊢ A2

∆1,∆2 ⊢ A1 ⊗ A2
(⊗I)

∆ ⊢ A1 ⊗ A2 ∆′,A1,A2 ⊢ C

∆,∆′ ⊢ C
(⊗E)

Hype for Types Substructural Logic October 3, 2023 16 / 29

Conjunction

Constructive Logic

Γ ⊢ A1 Γ ⊢ A2

Γ ⊢ A1 ∧ A2
(∧I)

Γ ⊢ A1 ∧ A2

Γ ⊢ A1
(∧E1)

Γ ⊢ A1 ∧ A2

Γ ⊢ A2
(∧E2)

Linear Logic

∆1 ⊢ A1 ∆2 ⊢ A2

∆1,∆2 ⊢ A1 ⊗ A2
(⊗I)

∆ ⊢ A1 ⊗ A2 ∆′,A1,A2 ⊢ C

∆,∆′ ⊢ C
(⊗E)

Hype for Types Substructural Logic October 3, 2023 16 / 29

Conjunction

Constructive Logic

Γ ⊢ A1 Γ ⊢ A2

Γ ⊢ A1 ∧ A2
(∧I)

Γ ⊢ A1 ∧ A2

Γ ⊢ A1
(∧E1)

Γ ⊢ A1 ∧ A2

Γ ⊢ A2
(∧E2)

Linear Logic

∆1 ⊢ A1 ∆2 ⊢ A2

∆1,∆2 ⊢ A1 ⊗ A2
(⊗I)

∆ ⊢ A1 ⊗ A2 ∆′,A1,A2 ⊢ C

∆,∆′ ⊢ C
(⊗E)

Hype for Types Substructural Logic October 3, 2023 16 / 29

Conjunction

Constructive Logic

Γ ⊢ A1 Γ ⊢ A2

Γ ⊢ A1 ∧ A2
(∧I)

Γ ⊢ A1 ∧ A2

Γ ⊢ A1
(∧E1)

Γ ⊢ A1 ∧ A2

Γ ⊢ A2
(∧E2)

Linear Logic

∆1 ⊢ A1 ∆2 ⊢ A2

∆1,∆2 ⊢ A1 ⊗ A2
(⊗I)

∆ ⊢ A1 ⊗ A2 ∆′,A1,A2 ⊢ C

∆,∆′ ⊢ C
(⊗E)

Hype for Types Substructural Logic October 3, 2023 16 / 29

Disjunction

Constructive Logic

Γ ⊢ A1

Γ ⊢ A1 ∨ A2
(∨I1)

Γ ⊢ A2

Γ ⊢ A1 ∨ A2
(∨I2)

Γ ⊢ A1 ∨ A2 Γ,A1 ⊢ B Γ,A2 ⊢ B

Γ ⊢ B
(∨E)

Linear Logic

∆ ⊢ A1

∆ ⊢ A1 ⊕ A2
(⊕I1)

∆ ⊢ A2

∆ ⊢ A1 ⊕ A2
(⊕I2)

∆ ⊢ A1 ⊕ A2 ∆′,A1 ⊢ B ∆′,A2 ⊢ B

∆,∆′ ⊢ B
(⊕E)

Hype for Types Substructural Logic October 3, 2023 17 / 29

Disjunction

Constructive Logic

Γ ⊢ A1

Γ ⊢ A1 ∨ A2
(∨I1)

Γ ⊢ A2

Γ ⊢ A1 ∨ A2
(∨I2)

Γ ⊢ A1 ∨ A2 Γ,A1 ⊢ B Γ,A2 ⊢ B

Γ ⊢ B
(∨E)

Linear Logic

∆ ⊢ A1

∆ ⊢ A1 ⊕ A2
(⊕I1)

∆ ⊢ A2

∆ ⊢ A1 ⊕ A2
(⊕I2)

∆ ⊢ A1 ⊕ A2 ∆′,A1 ⊢ B ∆′,A2 ⊢ B

∆,∆′ ⊢ B
(⊕E)

Hype for Types Substructural Logic October 3, 2023 17 / 29

Disjunction

Constructive Logic

Γ ⊢ A1

Γ ⊢ A1 ∨ A2
(∨I1)

Γ ⊢ A2

Γ ⊢ A1 ∨ A2
(∨I2)

Γ ⊢ A1 ∨ A2 Γ,A1 ⊢ B Γ,A2 ⊢ B

Γ ⊢ B
(∨E)

Linear Logic

∆ ⊢ A1

∆ ⊢ A1 ⊕ A2
(⊕I1)

∆ ⊢ A2

∆ ⊢ A1 ⊕ A2
(⊕I2)

∆ ⊢ A1 ⊕ A2 ∆′,A1 ⊢ B ∆′,A2 ⊢ B

∆,∆′ ⊢ B
(⊕E)

Hype for Types Substructural Logic October 3, 2023 17 / 29

Disjunction

Constructive Logic

Γ ⊢ A1

Γ ⊢ A1 ∨ A2
(∨I1)

Γ ⊢ A2

Γ ⊢ A1 ∨ A2
(∨I2)

Γ ⊢ A1 ∨ A2 Γ,A1 ⊢ B Γ,A2 ⊢ B

Γ ⊢ B
(∨E)

Linear Logic

∆ ⊢ A1

∆ ⊢ A1 ⊕ A2
(⊕I1)

∆ ⊢ A2

∆ ⊢ A1 ⊕ A2
(⊕I2)

∆ ⊢ A1 ⊕ A2 ∆′,A1 ⊢ B ∆′,A2 ⊢ B

∆,∆′ ⊢ B
(⊕E)

Hype for Types Substructural Logic October 3, 2023 17 / 29

Disjunction

Constructive Logic

Γ ⊢ A1

Γ ⊢ A1 ∨ A2
(∨I1)

Γ ⊢ A2

Γ ⊢ A1 ∨ A2
(∨I2)

Γ ⊢ A1 ∨ A2 Γ,A1 ⊢ B Γ,A2 ⊢ B

Γ ⊢ B
(∨E)

Linear Logic

∆ ⊢ A1

∆ ⊢ A1 ⊕ A2
(⊕I1)

∆ ⊢ A2

∆ ⊢ A1 ⊕ A2
(⊕I2)

∆ ⊢ A1 ⊕ A2 ∆′,A1 ⊢ B ∆′,A2 ⊢ B

∆,∆′ ⊢ B
(⊕E)

Hype for Types Substructural Logic October 3, 2023 17 / 29

Implication

Constructive Logic

Γ,A1 ⊢ A2

Γ ⊢ A1 ⊃ A2
(⊃ I)

Γ ⊢ A1 ⊃ A2 Γ ⊢ A1

Γ ⊢ A2
(⊃ E)

Linear Logic

∆,A1 ⊢ A2

∆ ⊢ A1 ⊸ A2
(⊸ I)

∆ ⊢ A1 ⊸ A2 ∆′ ⊢ A1

∆,∆′ ⊢ A2
(⊸ E)

Hype for Types Substructural Logic October 3, 2023 18 / 29

Implication

Constructive Logic

Γ,A1 ⊢ A2

Γ ⊢ A1 ⊃ A2
(⊃ I)

Γ ⊢ A1 ⊃ A2 Γ ⊢ A1

Γ ⊢ A2
(⊃ E)

Linear Logic

∆,A1 ⊢ A2

∆ ⊢ A1 ⊸ A2
(⊸ I)

∆ ⊢ A1 ⊸ A2 ∆′ ⊢ A1

∆,∆′ ⊢ A2
(⊸ E)

Hype for Types Substructural Logic October 3, 2023 18 / 29

Implication

Constructive Logic

Γ,A1 ⊢ A2

Γ ⊢ A1 ⊃ A2
(⊃ I)

Γ ⊢ A1 ⊃ A2 Γ ⊢ A1

Γ ⊢ A2
(⊃ E)

Linear Logic

∆,A1 ⊢ A2

∆ ⊢ A1 ⊸ A2
(⊸ I)

∆ ⊢ A1 ⊸ A2 ∆′ ⊢ A1

∆,∆′ ⊢ A2
(⊸ E)

Hype for Types Substructural Logic October 3, 2023 18 / 29

Implication

Constructive Logic

Γ,A1 ⊢ A2

Γ ⊢ A1 ⊃ A2
(⊃ I)

Γ ⊢ A1 ⊃ A2 Γ ⊢ A1

Γ ⊢ A2
(⊃ E)

Linear Logic

∆,A1 ⊢ A2

∆ ⊢ A1 ⊸ A2
(⊸ I)

∆ ⊢ A1 ⊸ A2 ∆′ ⊢ A1

∆,∆′ ⊢ A2
(⊸ E)

Hype for Types Substructural Logic October 3, 2023 18 / 29

Model Real Worlds Using Linear Logic

5 dollars can buy one coffee and one donut.

$5 ⊸ coffee⊗ donut

Buffet entrance is 10 dollars. Once you enter, you can eat some beef, and
with 2 more dollars you can eat some chicken.

$10 ⊸ beef⊗ ($2 ⊸ chicken)

Hype for Types Substructural Logic October 3, 2023 19 / 29

Model Real Worlds Using Linear Logic

5 dollars can buy one coffee and one donut.

$5 ⊸ coffee⊗ donut

Buffet entrance is 10 dollars. Once you enter, you can eat some beef, and
with 2 more dollars you can eat some chicken.

$10 ⊸ beef⊗ ($2 ⊸ chicken)

Hype for Types Substructural Logic October 3, 2023 19 / 29

Towards a Linear C0

0Fine, C0.
Hype for Types Substructural Logic October 3, 2023 20 / 29

What are resources in C0?

int? string? int*?

We’ll just treat pointers as linear

Use a reusable context, Γ, to represent reusable variables and a
linear context, ∆, for linear variables

Γ, x : τ ; · ⊢ x : τ
(Var-Reusable)

Γ; x : τ ⊢ x : τ
(Var-Linear)

Hype for Types Substructural Logic October 3, 2023 21 / 29

What are resources in C0?

int? string? int*?

We’ll just treat pointers as linear

Use a reusable context, Γ, to represent reusable variables and a
linear context, ∆, for linear variables

Γ, x : τ ; · ⊢ x : τ
(Var-Reusable)

Γ; x : τ ⊢ x : τ
(Var-Linear)

Hype for Types Substructural Logic October 3, 2023 21 / 29

What are resources in C0?

int? string? int*?

We’ll just treat pointers as linear

Use a reusable context, Γ, to represent reusable variables and a
linear context, ∆, for linear variables

Γ, x : τ ; · ⊢ x : τ
(Var-Reusable)

Γ; x : τ ⊢ x : τ
(Var-Linear)

Hype for Types Substructural Logic October 3, 2023 21 / 29

What are resources in C0?

int? string? int*?

We’ll just treat pointers as linear

Use a reusable context, Γ, to represent reusable variables and a
linear context, ∆, for linear variables

Γ, x : τ ; · ⊢ x : τ
(Var-Reusable)

Γ; x : τ ⊢ x : τ
(Var-Linear)

Hype for Types Substructural Logic October 3, 2023 21 / 29

Resource Splitting: Operators

In C0, we have built-in operators (e.g., +, -).

+ : (int, int) → int - : (int, int) → int == : (int, int) → bool

⊙ : (τ1, τ2) → τ Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 ⊙ e2 : τ
(SML BinOp)

⊙ : (τ1, τ2) → τ Γ;∆1 ⊢ e1 : τ1 Γ;∆2 ⊢ e2 : τ2

Γ;∆1,∆2 ⊢ e1 ⊙ e2 : τ
(C0 BinOp)

Hype for Types Substructural Logic October 3, 2023 22 / 29

Resource Splitting: Operators

In C0, we have built-in operators (e.g., +, -).

+ : (int, int) → int - : (int, int) → int == : (int, int) → bool

⊙ : (τ1, τ2) → τ Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 ⊙ e2 : τ
(SML BinOp)

⊙ : (τ1, τ2) → τ Γ;∆1 ⊢ e1 : τ1 Γ;∆2 ⊢ e2 : τ2

Γ;∆1,∆2 ⊢ e1 ⊙ e2 : τ
(C0 BinOp)

Hype for Types Substructural Logic October 3, 2023 22 / 29

Resource Splitting: Operators

In C0, we have built-in operators (e.g., +, -).

+ : (int, int) → int - : (int, int) → int == : (int, int) → bool

⊙ : (τ1, τ2) → τ Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 ⊙ e2 : τ
(SML BinOp)

⊙ : (τ1, τ2) → τ Γ;∆1 ⊢ e1 : τ1 Γ;∆2 ⊢ e2 : τ2

Γ;∆1,∆2 ⊢ e1 ⊙ e2 : τ
(C0 BinOp)

Hype for Types Substructural Logic October 3, 2023 22 / 29

Resource Splitting: Operators

In C0, we have built-in operators (e.g., +, -).

+ : (int, int) → int - : (int, int) → int == : (int, int) → bool

⊙ : (τ1, τ2) → τ Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 ⊙ e2 : τ
(SML BinOp)

⊙ : (τ1, τ2) → τ Γ;∆1 ⊢ e1 : τ1 Γ;∆2 ⊢ e2 : τ2

Γ;∆1,∆2 ⊢ e1 ⊙ e2 : τ
(C0 BinOp)

Hype for Types Substructural Logic October 3, 2023 22 / 29

Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(τ1, . . . , τn) → τ Γ; ? ⊢ ei : τi (∀i)
Γ; ? ⊢ f (e1, . . . , en) : τ

(C0 Application)

1 int* foo(int* a, int* b) {

2 free(a); return b;

3 }

4

5 int main() {

6 int* x = alloc(int);

7 int* y = foo(x, x); // now a type error!

8 free(y);

9 return 0;

10 }

Hype for Types Substructural Logic October 3, 2023 23 / 29

Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(τ1, . . . , τn) → τ Γ; ? ⊢ ei : τi (∀i)
Γ; ? ⊢ f (e1, . . . , en) : τ

(C0 Application)

1 int* foo(int* a, int* b) {

2 free(a); return b;

3 }

4

5 int main() {

6 int* x = alloc(int);

7 int* y = foo(x, x); // now a type error!

8 free(y);

9 return 0;

10 }

Hype for Types Substructural Logic October 3, 2023 23 / 29

Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(τ1, . . . , τn) → τ Γ;∆i ⊢ ei : τi (∀i)
Γ;∆1, . . . ,∆n ⊢ f (e1, . . . , en) : τ

(C0 Application)

1 int* foo(int* a, int* b) {

2 free(a); return b;

3 }

4

5 int main() {

6 int* x = alloc(int);

7 int* y = foo(x, x); // now a type error!

8 free(y);

9 return 0;

10 }

Hype for Types Substructural Logic October 3, 2023 23 / 29

Resource Splitting: Function Application

We also have user-defined top-level functions (e.g. foo, reverse_list).

(τ1, . . . , τn) → τ Γ;∆i ⊢ ei : τi (∀i)
Γ;∆1, . . . ,∆n ⊢ f (e1, . . . , en) : τ

(C0 Application)

1 int* foo(int* a, int* b) {

2 free(a); return b;

3 }

4

5 int main() {

6 int* x = alloc(int);

7 int* y = foo(x, x); // now a type error!

8 free(y);

9 return 0;

10 }

Hype for Types Substructural Logic October 3, 2023 23 / 29

Resource Splitting: Null Checks

In general, pointer equality won’t make sense in our language, since all
pointers should be distinct.
However, in C, we need a way to check if pointers are NULL! Introducing:

1 int* create () /* ... */

2

3 int main() {

4 int* x = create ();

5

6 if (x is NULL) {

7 return 0;

8 } else {

9 int y = *x; // still have x here!

10 return y;

11 }

12 }

Hype for Types Substructural Logic October 3, 2023 24 / 29

Resource Splitting: Null Checks

Γ; ? ⊢ NULL : τ∗
(Null)

Γ; ? ⊢ e1 : τ2 Γ; ? ⊢ e2 : τ2

Γ;∆, x : τ∗1 ⊢ ifnull(x ; e1; e2)
(IfNull)

Hype for Types Substructural Logic October 3, 2023 25 / 29

Resource Splitting: Null Checks

Γ; · ⊢ NULL : τ∗
(Null)

Γ; ? ⊢ e1 : τ2 Γ; ? ⊢ e2 : τ2

Γ;∆, x : τ∗1 ⊢ ifnull(x ; e1; e2)
(IfNull)

Hype for Types Substructural Logic October 3, 2023 25 / 29

Resource Splitting: Null Checks

Γ; · ⊢ NULL : τ∗
(Null)

Γ; ? ⊢ e1 : τ2 Γ; ? ⊢ e2 : τ2

Γ;∆, x : τ∗1 ⊢ ifnull(x ; e1; e2)
(IfNull)

Hype for Types Substructural Logic October 3, 2023 25 / 29

Resource Splitting: Null Checks

Γ; · ⊢ NULL : τ∗
(Null)

Γ;∆ ⊢ e1 : τ2 Γ; ? ⊢ e2 : τ2

Γ;∆, x : τ∗1 ⊢ ifnull(x ; e1; e2)
(IfNull)

Hype for Types Substructural Logic October 3, 2023 25 / 29

Resource Splitting: Null Checks

Γ; · ⊢ NULL : τ∗
(Null)

Γ;∆ ⊢ e1 : τ2 Γ;∆, x : τ∗1 ⊢ e2 : τ2

Γ;∆, x : τ∗1 ⊢ ifnull(x ; e1; e2)
(IfNull)

Hype for Types Substructural Logic October 3, 2023 25 / 29

Resource Tracking: Struct Introduction

Just like standard C0, we can allocate structs:

1 struct list {

2 int head;

3 struct list* tail;

4 };

5

6 struct list* nil() {

7 return NULL;

8 }

9

10 struct list* cons(int x, struct list* xs) {

11 struct list* node = alloc(struct list);

12 node ->head = x;

13 node ->tail = xs;

14 return node;

15 }

Hype for Types Substructural Logic October 3, 2023 26 / 29

Resource Tracking: Struct Elimination

Problem

We can’t eliminate structs like we used to. How will we know that each
field is used exactly once?

Structs are just like products - so, pattern match!

1 struct list {

2 int head;

3 struct list* tail;

4 };

5

6 int list_sum(struct list* l) {

7 if (l is NULL)

8 return 0;

9

10 let { head = x; tail = xs; } = l; // new syntax

11 return x + list_sum(xs);

12 }

Hype for Types Substructural Logic October 3, 2023 27 / 29

Resource Tracking: Struct Elimination

Problem

We can’t eliminate structs like we used to. How will we know that each
field is used exactly once?

Structs are just like products - so, pattern match!

1 struct list {

2 int head;

3 struct list* tail;

4 };

5

6 int list_sum(struct list* l) {

7 if (l is NULL)

8 return 0;

9

10 let { head = x; tail = xs; } = l; // new syntax

11 return x + list_sum(xs);

12 }

Hype for Types Substructural Logic October 3, 2023 27 / 29

Resource Tracking: Struct Elimination

Problem

We can’t eliminate structs like we used to. How will we know that each
field is used exactly once?

Structs are just like products - so, pattern match!

1 struct list {

2 int head;

3 struct list* tail;

4 };

5

6 int list_sum(struct list* l) {

7 if (l is NULL)

8 return 0;

9

10 let { head = x; tail = xs; } = l; // new syntax

11 return x + list_sum(xs);

12 }

Hype for Types Substructural Logic October 3, 2023 27 / 29

Live Coding

Hype for Types Substructural Logic October 3, 2023 28 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

Conclusion

Things We Talked About

The idea of a logic being substructural

Linearity as a way of representing state

Linear propositions in terms of resources

A practical example of linear logic for memory safety

Things We Didn’t Cover

Linear logic is actually all about processes and messages
▶ Concurrency!

Resource tracking (identify the cost of different programs)

Rust (which utilizes an affine logic system)

More constrained substructural logics, such as ordered logic

Hype for Types Substructural Logic October 3, 2023 29 / 29

	Substructural Logic
	Linear Logic
	The Linear Rules
	Towards a Linear CFine, C0.
	Live Coding

