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Inductive types are great

dataN : Type where
zero :N
suc :N→N

data List (A : Type) : Type where
[] : List A
_::_ : A→ List A→ List A



Programwith inductive types

dataZ : Type where
Pos :N→Z
Neg :N→Z

Invariant: Pos zero should always be equal toNeg zero.
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Programwith invariants inmind is hard

pred :Z→Z
pred (Pos zero) = Neg (suc zero)
pred (Pos (suc x)) = Pos x
pred (Neg x) = Neg (suc x)

Convince yourself that this function respects the invariant:

pred (Pos zero) should be equal to pred (Neg zero).
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What if I made amistake?

pred_bad :Z→Z
pred_bad (Pos zero) = Neg zero -- bug here!
pred_bad (Pos (suc x)) = Pos x
pred_bad (Neg x) = Neg (suc x)

The invariant is broken:

pred_bad (Pos zero) = Neg zero is not equal to
pred_bad (Neg zero) = Neg (suc zero).

Nevertheless this program still typechecks.
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“If it typechecks, it is correct” is a lie.



Let’s make the invariant part of the type

dataZ’ : Type where
Pos :N→Z’
Neg :N→Z’
Inv : Pos zero ≡ Neg zero

Nowwhen we programwithZ’, we need to consider three cases:
Pos,Neg, and Inv.
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Typechecker checks the invariant for us

pred_bad’ :Z’ →Z’
pred_bad’ (Pos zero) = Neg zero
pred_bad’ (Pos (suc x)) = Pos x
pred_bad’ (Neg x) = Neg (suc x)
pred_bad’ (Inv i) = {! !}

What should we fill in the hole?

Let’s see what does the typechecker want:

———— Boundary (wanted) —————————————
i = i0 ⊢ Neg zero
i = i1 ⊢ Neg (suc zero)
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Fill in the hole

pred’ :Z’ →Z’
pred’ (Pos zero) = Neg (suc zero)
pred’ (Pos (suc x)) = Pos x
pred’ (Neg x) = Neg (suc x)
pred’ (Inv i) = refl {x = Neg (suc zero)} i

reflmeans “reflexivity” of equality, which is a proof that x is
equal to x for any x.

Now the program typechecks, because we give a proof that pred’
respects the invariant.
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If it typechecks, it is correct.



Higher inductive types

Like inductive types, HIT has constructors such as Pos andNeg.

Unlike inductive types, HIT has extra constructors that
introduce equalities, such as Inv.



Circle

base

loop

Classically, a circle is:
{(x, y) | x2 + y2 = r2}.

Using HIT, a circle is:

data Circle : Type where
base : Circle
loop : base ≡ base
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How about a donut (torus)?



Torus
data Torus : Type where

base : Torus
loop1 : base ≡ base
loop2 : base ≡ base
square : Square loop1 loop2 loop2 loop1

base base

square

base base

loop2

loop1 loop1

loop2



A torus is two circles

In topology, a ring torus is homeomorphic to the Cartesian
product of two circles.

(Wikipedia)

Torus≃Circle×Circle : Torus ≡ ( Circle × Circle )

Proof by induction on the torus and the circles.
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Conclusion

• HIT rises fromHomotopy TypeTheory/Univalent
Foundations (HoTT/UF).

• HIT is great for programming with invariants.

• HIT is great for proving mathematical theorems,
especially in homotopy theory.


