
Higher Inductive Types
Hype for Types Guest Lecture
December 1, 2024

Runming Li

Inductive types are great

dataN : Type where
zero :N
suc :N→N

data List (A : Type) : Type where
[] : List A
:: : A→ List A→ List A

Programwith inductive types

dataZ : Type where
Pos :N→Z
Neg :N→Z

Invariant: Pos zero should always be equal toNeg zero.

Programwith inductive types

dataZ : Type where
Pos :N→Z
Neg :N→Z

Invariant: Pos zero should always be equal toNeg zero.

Programwith invariants inmind is hard

pred :Z→Z
pred (Pos zero) = Neg (suc zero)
pred (Pos (suc x)) = Pos x
pred (Neg x) = Neg (suc x)

Convince yourself that this function respects the invariant:

pred (Pos zero) should be equal to pred (Neg zero).

Programwith invariants inmind is hard

pred :Z→Z
pred (Pos zero) = Neg (suc zero)
pred (Pos (suc x)) = Pos x
pred (Neg x) = Neg (suc x)

Convince yourself that this function respects the invariant:

pred (Pos zero) should be equal to pred (Neg zero).

What if I made amistake?

pred_bad :Z→Z
pred_bad (Pos zero) = Neg zero -- bug here!
pred_bad (Pos (suc x)) = Pos x
pred_bad (Neg x) = Neg (suc x)

The invariant is broken:

pred_bad (Pos zero) = Neg zero is not equal to
pred_bad (Neg zero) = Neg (suc zero).

Nevertheless this program still typechecks.

What if I made amistake?

pred_bad :Z→Z
pred_bad (Pos zero) = Neg zero -- bug here!
pred_bad (Pos (suc x)) = Pos x
pred_bad (Neg x) = Neg (suc x)

The invariant is broken:

pred_bad (Pos zero) = Neg zero is not equal to
pred_bad (Neg zero) = Neg (suc zero).

Nevertheless this program still typechecks.

“If it typechecks, it is correct” is a lie.

Let’s make the invariant part of the type

dataZ’ : Type where
Pos :N→Z’
Neg :N→Z’
Inv : Pos zero ≡ Neg zero

Nowwhen we programwithZ’, we need to consider three cases:
Pos,Neg, and Inv.

Let’s make the invariant part of the type

dataZ’ : Type where
Pos :N→Z’
Neg :N→Z’
Inv : Pos zero ≡ Neg zero

Nowwhen we programwithZ’, we need to consider three cases:
Pos,Neg, and Inv.

Typechecker checks the invariant for us

pred_bad’ :Z’ →Z’
pred_bad’ (Pos zero) = Neg zero
pred_bad’ (Pos (suc x)) = Pos x
pred_bad’ (Neg x) = Neg (suc x)
pred_bad’ (Inv i) = {! !}

What should we fill in the hole?

Let’s see what does the typechecker want:

———— Boundary (wanted) —————————————
i = i0 ⊢ Neg zero
i = i1 ⊢ Neg (suc zero)

Typechecker checks the invariant for us

pred_bad’ :Z’ →Z’
pred_bad’ (Pos zero) = Neg zero
pred_bad’ (Pos (suc x)) = Pos x
pred_bad’ (Neg x) = Neg (suc x)
pred_bad’ (Inv i) = {! !}

What should we fill in the hole?

Let’s see what does the typechecker want:

———— Boundary (wanted) —————————————
i = i0 ⊢ Neg zero
i = i1 ⊢ Neg (suc zero)

Typechecker checks the invariant for us

pred_bad’ :Z’ →Z’
pred_bad’ (Pos zero) = Neg zero
pred_bad’ (Pos (suc x)) = Pos x
pred_bad’ (Neg x) = Neg (suc x)
pred_bad’ (Inv i) = {! !}

What should we fill in the hole?

Let’s see what does the typechecker want:

———— Boundary (wanted) —————————————
i = i0 ⊢ Neg zero
i = i1 ⊢ Neg (suc zero)

Fill in the hole

pred’ :Z’ →Z’
pred’ (Pos zero) = Neg (suc zero)
pred’ (Pos (suc x)) = Pos x
pred’ (Neg x) = Neg (suc x)
pred’ (Inv i) = refl {x = Neg (suc zero)} i

reflmeans “reflexivity” of equality, which is a proof that x is
equal to x for any x.

Now the program typechecks, because we give a proof that pred’
respects the invariant.

Fill in the hole

pred’ :Z’ →Z’
pred’ (Pos zero) = Neg (suc zero)
pred’ (Pos (suc x)) = Pos x
pred’ (Neg x) = Neg (suc x)
pred’ (Inv i) = refl {x = Neg (suc zero)} i

reflmeans “reflexivity” of equality, which is a proof that x is
equal to x for any x.

Now the program typechecks, because we give a proof that pred’
respects the invariant.

If it typechecks, it is correct.

Higher inductive types

Like inductive types, HIT has constructors such as Pos andNeg.

Unlike inductive types, HIT has extra constructors that
introduce equalities, such as Inv.

Circle

base

loop

Classically, a circle is:
{(x, y) | x2 + y2 = r2}.

Using HIT, a circle is:

data Circle : Type where
base : Circle
loop : base ≡ base

Circle

base

loop

Classically, a circle is:
{(x, y) | x2 + y2 = r2}.

Using HIT, a circle is:

data Circle : Type where
base : Circle
loop : base ≡ base

How about a donut (torus)?

Torus
data Torus : Type where

base : Torus
loop1 : base ≡ base
loop2 : base ≡ base
square : Square loop1 loop2 loop2 loop1

base base

square

base base

loop2

loop1 loop1

loop2

A torus is two circles

In topology, a ring torus is homeomorphic to the Cartesian
product of two circles.

(Wikipedia)

Torus≃Circle×Circle : Torus ≡ (Circle × Circle)

Proof by induction on the torus and the circles.

A torus is two circles

In topology, a ring torus is homeomorphic to the Cartesian
product of two circles.

(Wikipedia)

Torus≃Circle×Circle : Torus ≡ (Circle × Circle)

Proof by induction on the torus and the circles.

Conclusion

• HIT rises fromHomotopy TypeTheory/Univalent
Foundations (HoTT/UF).

• HIT is great for programming with invariants.

• HIT is great for proving mathematical theorems,
especially in homotopy theory.

