Higher Inductive Types

Hype for Types Guest Lecture
December 1, 2024

Runming Li

Inductive types are great

data IN : Type where
zero: IN
suc: N — IN

data List (A : Type) : Type where
[]:ListA
i A — ListA— ListA

Program with inductive types

data Z. : Type where
Pos:IN — Z
Neg:IN — Z

Program with inductive types

data Z. : Type where
Pos:IN — Z
Neg:IN — Z

Invariant: Pos zero should always be equal to Neg zero.

Program with invariants in mind is hard

pred: Z — Z

pred (Pos zero) = Neg (suc zero)
pred (Pos (suc x)) = Pos x

pred (Neg x) = Neg (suc x)

Program with invariants in mind is hard

pred: Z — Z

pred (Pos zero) = Neg (suc zero)
pred (Pos (suc x)) = Pos x

pred (Neg x) = Neg (suc x)

Convince yourself that this function respects the invariant:

pred (Pos zero) should be equal to pred (Neg zero).

What if I made a mistake?

pred_bad:Z — Z

pred_bad (Pos zero) = Neg zero -- bug here!
pred_bad (Pos (suc x)) = Pos x

pred_bad (Neg x) = Neg (suc x)

What if I made a mistake?

pred_bad:Z — Z

pred_bad (Pos zero) = Neg zero -- bug here!
pred_bad (Pos (suc x)) = Pos x

pred_bad (Neg x) = Neg (suc x)

The invariant is broken:

pred_bad (Pos zero) = Neg zero is not equal to
pred_bad (Neg zero) = Neg (suc zero).

Nevertheless this program still typechecks.

“If it typechecks, it is correct” is a lie.

Let’s make the invariant part of the type

data Z : Type where
Pos:IN — 2Z’
Neg:IN — 2
Inv : Pos zero = Neg zero

Let’s make the invariant part of the type

data Z : Type where
Pos:IN — 2Z’
Neg:IN — 2
Inv : Pos zero = Neg zero

Now when we program with Z’, we need to consider three cases:
Pos, Neg, and Inv.

Typechecker checks the invariant for us

pred_bad’ : 2 — 27

pred_bad’ (Pos zero) = Neg zero
pred_bad’ (Pos (suc x)) = Pos x
pred_bad’ (Neg x) = Neg (suc x)
pred_bad’ (Invi)= {I 1}

Typechecker checks the invariant for us

pred_bad’ : 2 — 27

pred_bad’ (Pos zero) = Neg zero
pred_bad’ (Pos (suc x)) = Pos x
pred_bad’ (Neg x) = Neg (suc x)
pred_bad’ (Invi)= {I 1}

What should we fill in the hole?

Typechecker checks the invariant for us

pred_bad’ : 2 — 27
pred_bad’ (Pos zero) = Neg zero
pred_bad’ (Pos (suc x)) = Pos x
pred_bad’ (Neg x) = Neg (suc x)
pred_bad’ (Invi)= {I 1}

What should we fill in the hole?
Let’s see what does the typechecker want:

---- Boundary (wanted) -------------
i = i0 - Neg zero
i = i1 + Neg (suc zero)

R
Fill in the hole

pred : 7 — 27

pred’ (Pos zero) = Neg (suc zero)

pred’ (Pos (sucx)) = Pos x

pred’ (Neg x) = Neg (suc x)

pred’ (Inv i) = refl {x = Neg (suc zero)} i

refl means “reflexivity” of equality, which is a proof that x is
equal to x for any x.

Fill in the hole

pred : 7 — 27

pred’ (Pos zero) = Neg (suc zero)

pred’ (Pos (sucx)) = Pos x

pred’ (Neg x) = Neg (suc x)

pred’ (Inv i) = refl {x = Neg (suc zero)} i

refl means “reflexivity” of equality, which is a proof that x is
equal to x for any x.

Now the program typechecks, because we give a proof that pred’
respects the invariant.

If it typechecks, it is correct.

-
Higher inductive types

Like inductive types, HIT has constructors such as Pos and Neg.

Unlike inductive types, HIT has extra constructors that
introduce equalities, such as Inv.

Circle

Classically, a circle is:
{(x.p) [x* +y* =1},

loop

>

base

Circle

Classically, a circle is:
{(x.p) [x* +y* =1},

b Using HIT, a circle is:
b data Circle : Type where
ase base : Circle
loop : base = base

How about a donut (torus)?

Torus
data Torus : Type where
base : Torus
loop1 : base = base
loop2 : base = base
square : Square loop1 loop2 loop2 loop1

loop2

base > base

loop1 square loop1

base > base
loop2

A torus is two circles

In topology, a ring torus is homeomorphic to the Cartesian
product of two circles.

(Wikipedia)

A torus is two circles

In topology, a ring torus is homeomorphic to the Cartesian
product of two circles.

(Wikipedia)

Torus~Circle x Circle : Torus = (Circle x Circle)

Proof by induction on the torus and the circles.

Conclusion

e HIT rises from Homotopy Type Theory/Univalent
Foundations (HoTT/UF).

e HIT is great for programming with invariants.

e HIT is great for proving mathematical theorems,
especially in homotopy theory.

