Higher Inductive Types

Hype for Types Guest Lecture December 1, 2024

Runming Li

Inductive types are great

data \mathbb{N} : Type where zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$

data List (A : Type) : Type where [] : List A _::_ : $A \rightarrow \text{List } A \rightarrow \text{List } A$

Program with inductive types

data \mathbb{Z} : Type where Pos : $\mathbb{N} \to \mathbb{Z}$ Neg : $\mathbb{N} \to \mathbb{Z}$

Program with inductive types

data \mathbb{Z} : Type where Pos : $\mathbb{N} \to \mathbb{Z}$ Neg : $\mathbb{N} \to \mathbb{Z}$

Invariant: Pos zero should always be equal to Neg zero.

Program with invariants in mind is hard

pred : $\mathbb{Z} \to \mathbb{Z}$ pred (Pos zero) = Neg (suc zero) pred (Pos (suc *x*)) = Pos *x* pred (Neg *x*) = Neg (suc *x*)

Program with invariants in mind is hard

pred : $\mathbb{Z} \to \mathbb{Z}$ pred (Pos zero) = Neg (suc zero) pred (Pos (suc *x*)) = Pos *x* pred (Neg *x*) = Neg (suc *x*)

Convince yourself that this function respects the invariant: pred (Pos zero) should be equal to pred (Neg zero).

What if I made a mistake?

pred_bad : $\mathbb{Z} \to \mathbb{Z}$ pred_bad (Pos zero) = Neg zero -- bug here! pred_bad (Pos (suc x)) = Pos xpred_bad (Neg x) = Neg (suc x)

What if I made a mistake?

pred_bad : $\mathbb{Z} \to \mathbb{Z}$ pred_bad (Pos zero) = Neg zero -- bug here! pred_bad (Pos (suc x)) = Pos xpred_bad (Neg x) = Neg (suc x)

The invariant is broken:

pred_bad (Pos zero) = Neg zero is not equal to pred_bad (Neg zero) = Neg (suc zero).

Nevertheless this program still typechecks.

"If it typechecks, it is correct" is a lie.

Let's make the invariant part of the type

data \mathbb{Z} ': Type where Pos : $\mathbb{N} \to \mathbb{Z}$ ' Neg : $\mathbb{N} \to \mathbb{Z}$ ' Inv : Pos zero \equiv Neg zero

Let's make the invariant part of the type

data \mathbb{Z}' : Type where Pos : $\mathbb{N} \to \mathbb{Z}'$ Neg : $\mathbb{N} \to \mathbb{Z}'$ Inv : Pos zero \equiv Neg zero

Now when we program with \mathbb{Z} , we need to consider three cases: Pos, Neg, and Inv.

Typechecker checks the invariant for us

pred_bad' : $\mathbb{Z}' \to \mathbb{Z}'$ pred_bad' (Pos zero) = Neg zero pred_bad' (Pos (suc *x*)) = Pos *x* pred_bad' (Neg *x*) = Neg (suc *x*) pred_bad' (Inv *i*) = $\{!, !\}$

Typechecker checks the invariant for us

pred_bad' : $\mathbb{Z}' \to \mathbb{Z}'$ pred_bad' (Pos zero) = Neg zero pred_bad' (Pos (suc *x*)) = Pos *x* pred_bad' (Neg *x*) = Neg (suc *x*) pred_bad' (Inv *i*) = $\{!, !\}$

What should we fill in the hole?

Typechecker checks the invariant for us

pred_bad' : $\mathbb{Z}' \to \mathbb{Z}'$ pred_bad' (Pos zero) = Neg zero pred_bad' (Pos (suc *x*)) = Pos *x* pred_bad' (Neg *x*) = Neg (suc *x*) pred_bad' (Inv *i*) = $\{!, !\}$

What should we fill in the hole?

Let's see what does the typechecker want:

---- Boundary (wanted) ----i = i0 ⊣ Neg zero i = i1 ⊣ Neg (suc zero)

Fill in the hole

pred': $\mathbb{Z}' \to \mathbb{Z}'$ pred' (Pos zero) = Neg (suc zero) pred' (Pos (suc x)) = Pos xpred' (Neg x) = Neg (suc x) pred' (Inv i) = refl {x = Neg (suc zero)} i

refl means "reflexivity" of equality, which is a proof that *x* is equal to *x* for any *x*.

Fill in the hole

pred': $\mathbb{Z}' \to \mathbb{Z}'$ pred' (Pos zero) = Neg (suc zero) pred' (Pos (suc x)) = Pos xpred' (Neg x) = Neg (suc x) pred' (Inv i) = refl {x = Neg (suc zero)} i

refl means "reflexivity" of equality, which is a proof that *x* is equal to *x* for any *x*.

Now the program typechecks, because we give a **proof** that **pred**' respects the invariant.

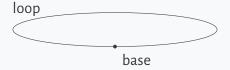
If it typechecks, it is correct.

Higher inductive types

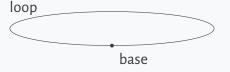
Like inductive types, HIT has constructors such as Pos and Neg. Unlike inductive types, HIT has extra constructors that introduce equalities, such as Inv.

Circle

Classically, a circle is: $\{(x, y) \mid x^2 + y^2 = r^2\}.$



Circle

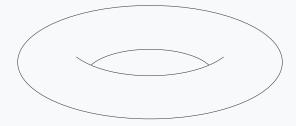


Classically, a circle is: $\{(x, y) \mid x^2 + y^2 = r^2\}.$

Using HIT, a circle is:

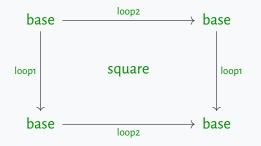
data Circle : Type where base : Circle loop : base \equiv base

How about a donut (torus)?



Torus

data Torus : Type where base : Torus loop1 : base ≡ base loop2 : base ≡ base square : Square loop1 loop2 loop2 loop1



A torus is two circles

In topology, a ring torus is homeomorphic to the Cartesian product of two circles.

(Wikipedia)

A torus is two circles

In topology, a ring torus is homeomorphic to the Cartesian product of two circles.

(Wikipedia)

 $Torus \simeq Circle \times Circle : Torus \equiv (Circle \times Circle)$

Proof by **induction** on the torus and the circles.

Conclusion

- HIT rises from Homotopy Type Theory/Univalent Foundations (HoTT/UF).
- HIT is great for programming with invariants.
- HIT is great for proving mathematical theorems, especially in homotopy theory.