Introduction and Lambda Calculus

Hype for Types

August 26, 2024

Introduction

Welcome to Hype for Types!

- Instructors:
 - Ari Battleman (zbattlem)
 - Kiera O'Flynn (koflynn)
 - Sonya Simkin (ssimkin)
- Attendance
 - In general, you have to come to lecture to pass
 - Let us know if you need to miss a week
- Homework
 - Every lecture will have an associated homework
 - Graded on effort (not correctness)
 - ▶ If you spend more than an hour, please stop¹

Other Stuff

- Please join the Discord and Gradescope if you haven't
- We assume everyone has 150 level knowledge of functional programming and type systems
 - If you don't have this and feel really lost, talk to us after class (and a 150 head TA will bring you up to speed)

Motivation

There are many common classes of mistakes/bugs/errors in code:

There are many common classes of mistakes/bugs/errors in code:

• 1 + "hello"

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"
- fun f x = f x

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"
- fun f x = f x
- malloc(sizeof(int)); return;

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"
- fun f x = f x
- malloc(sizeof(int)); return;
- free(A); free(A);

There are many common classes of mistakes/bugs/errors in code:

```
• 1 + "hello"
```

- fun f x = f x
- malloc(sizeof(int)); return;
- free(A); free(A);
- A[len(A)]

There are many common classes of mistakes/bugs/errors in code:

- 1 + "hello"
- fun f x = f x
- malloc(sizeof(int)); return;
- free(A); free(A);
- A[len(A)]
- @requires is_sorted(A)

Types are... hype!

Types are *descriptions* of how some piece of data can be used.

Foreshadowing: "a literary device in which a writer gives an advance hint of what is to come later in the story." Wikipedia, "Foreshadowing," retrieved 30 Aug 2022

Types are... hype!

Types are *descriptions* of how some piece of data can be used.

Guiding Question

How can we use types to catch errors at compile-time?

Foreshadowing: "a literary device in which a writer gives an advance hint of what is to come later in the story." Wikipedia, "Foreshadowing," retrieved 30 Aug 2022

Types are... hype!

Types are descriptions of how some piece of data can be used.

Guiding Question

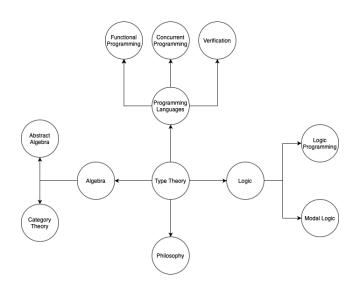
How can we use types to catch errors at compile-time?

Guiding Question

Can we use types for more than just bug-catching?²

² Foreshadowing: "a literary device in which a writer gives an advance hint of what is to come later in the story." Wikipedia, "Foreshadowing," retrieved 30 Aug. 2022

Type Theory at Large



Goal of This Course

- We do not ask students to master the content as in an academic course
- We do not replace any academic courses
- We do not focus on depth, but rather focus on breath

Goal of This Course

- We do not ask students to master the content as in an academic course
- We do not replace any academic courses
- We do not focus on depth, but rather focus on breath
- We DO expect you to have fun
- We DO hope to spark your interest in PL theory and start pursuing coursework and/or research in adjacent areas after taking this course
- We DO want you to learn about different fascinating aspects of types that you would otherwise take advanced courses and/or read complicated academic papers to understand

Course Credit

- 3 unit, P/F
- For undergraduate, count towards 360 total units graduation requirement
- For MSCS, count towards 12 units "MSCS elective units"

Caveat

You will see a lot of weird symbols in this class, please don't be intimated. We especially love λ .

Lambda Calculus

Building a tiny language

The simply-typed lambda calculus is simple. It only has four features³:

- Unit ("empty tuples")
- Booleans
- Tuples
- Functions

Building a tiny language

The simply-typed lambda calculus is simple. It only has four features³:

- Unit ("empty tuples")
- Booleans
- Tuples
- Functions

Goal

To use STLC as a tool to study how type checker works.

Expressions

We represent our expressions using a grammar.

```
variable
                                 unit
false
                                 false boolean
                                 true boolean
true
if e<sub>1</sub> then e<sub>2</sub> else e<sub>3</sub>
                                 boolean case analysis
\langle e_1, e_2 \rangle
                                 tuple
fst(e)
                                 first tuple element
snd(e)
                                 second tuple element
\lambda x : \tau. e
                                 function abstraction (lambda)
                                 function application
e_1 e_2
```

Types

Similarly, we define our types as follows:

$$\begin{array}{ccc} \tau & ::= & \mathbf{unit} \\ & | & \mathbf{bool} \\ & | & \tau_1 \times \tau_2 \\ & | & \tau_1 \to \tau_2 \end{array}$$

Types

Similarly, we define our types as follows:

$$\begin{array}{ccc} \tau & ::= & \mathbf{unit} \\ & | & \mathbf{bool} \\ & | & \tau_1 \times \tau_2 \\ & | & \tau_1 \rightarrow \tau_2 \end{array}$$

Million-dollar Question

How do we check if $e : \tau$?

Inference Rules

In logic, we use *inference rules* to state how facts follow from other facts.

$$\frac{\mathsf{premise}_1 \quad \mathsf{premise}_2 \quad \dots}{\mathsf{conclusion}}$$

Inference Rules

In logic, we use *inference rules* to state how facts follow from other facts.

$$\frac{\mathsf{premise}_1 \quad \mathsf{premise}_2 \quad \dots}{\mathsf{conclusion}}$$

For example:

Typing Rules: First Attempt

Consider the judgement $e:\tau$ ("e has type τ "). Let's try to express some simple typing rules.

			e_1 : bool e_2 : τ e_3 : τ
$\overline{\langle \rangle}$: unit	false : bool	true : bool	if e_1 then e_2 else e_3 : τ

$$\frac{e_1:\tau_1 \quad e_2:\tau_2}{\langle e_1,e_2\rangle:\tau_1\times\tau_2}$$

$$\frac{e:\tau_1\times\tau_2}{\mathsf{fst}(e):\tau_1}$$

$$\frac{e:\tau_1\times\tau_2}{\mathsf{snd}(e):\tau_2}$$

Typing Rules: First Attempt

Consider the judgement $e:\tau$ ("e has type τ "). Let's try to express some simple typing rules.

 $\frac{}{\langle \rangle : \text{unit}} \qquad \frac{}{\text{false : bool}} \qquad \frac{e_1 : \text{bool} \qquad e_2 : \tau \quad e_3 : \tau}{\text{if } e_1 \text{ then } e_2 \text{ else } e_3 : \tau}$

Question

How do we write rules for functions?

Typing Rules: Functions

Let's give it a shot.

$$\frac{e_1:\tau_1\to\tau_2\quad e_2:\tau_1}{e_1\ e_2:\tau_2}$$

Looks good so far...

Typing Rules: Functions

Let's give it a shot.

$$\frac{e_1:\tau_1\to\tau_2\quad e_2:\tau_1}{e_1\ e_2:\tau_2}$$

Looks good so far...

$$\frac{e:\tau_2(?)}{(\lambda x:\tau_1.\ e):\tau_1\to\tau_2}$$

Typing Rules: Functions

Let's give it a shot.

$$\frac{e_1:\tau_1\to\tau_2\quad e_2:\tau_1}{e_1\ e_2:\tau_2}$$

Looks good so far...

$$\frac{e:\tau_2(?)}{(\lambda x:\tau_1.\ e):\tau_1\to\tau_2}$$

Key Idea

Expressions only have types given a context!

Contexts

Intuition

If, given $x : \tau_1$, we know $e : \tau_2$, then $(\lambda x : \tau_1. \ e) : \tau_1 \to \tau_2$.

Therefore, we need a context (denoted Γ) which associates types with variables.

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash (\lambda x : \tau_1. \ e) : \tau_1 \to \tau_2}$$

What types does some variable x have? It depends on the previous code!

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau}$$

All the rules!

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau} \text{ (VAR)} \qquad \frac{}{\Gamma\vdash \langle\rangle: \text{ unit}} \text{ (UNIT)} \qquad \frac{}{\Gamma\vdash \text{ false}: \text{bool}} \text{ (FALSE)}$$

$$\frac{}{\Gamma\vdash \text{ true}: \text{bool}} \text{ (TRUE)} \qquad \frac{}{\Gamma\vdash e_1: \text{bool}} \qquad \frac{}{\Gamma\vdash e_1: \text{constant}} \text{ (IF)}$$

$$\frac{}{\Gamma\vdash e_1: \tau_1 \qquad \Gamma\vdash e_2: \tau_2} \qquad \text{(TUP)} \qquad \frac{}{\Gamma\vdash \text{ either}} \qquad \frac{}{\Gamma\vdash \text{ either}} \qquad \text{(FST)}$$

$$\frac{}{\Gamma\vdash e_1: \tau_1 \times \tau_2} \qquad \text{(SND)} \qquad \frac{}{\Gamma\vdash \text{ (AX: } \tau_1\vdash e: \tau_2} \qquad \text{(ABS)}}{} \qquad \frac{}{\Gamma\vdash \text{ (AX: } \tau_1\vdash e: \tau_2} \qquad \text{(ABS)}} \qquad \frac{}{\Gamma\vdash e_1: \tau_1\to \tau_2} \qquad \text{(APP)}$$

Example: what's the type?

Let's derive that

$$\cdot \vdash (\lambda x : \mathsf{unit}. \langle x, \mathsf{true} \rangle) \langle \rangle : \mathsf{unit} \times \mathsf{bool}$$

by using the rules.

Example: what's the type?

Let's derive that

$$\cdot \vdash (\lambda x : \mathsf{unit}. \langle x, \mathsf{true} \rangle) \langle \rangle : \mathsf{unit} \times \mathsf{bool}$$

by using the rules.

```
 \frac{x: \mathsf{unit} \in \cdot, x: \mathsf{unit}}{\cdot, x: \mathsf{unit} \vdash x: \mathsf{unit}} \xrightarrow{(\mathsf{VAR})} \frac{\cdot}{\cdot, x: \mathsf{unit} \vdash \mathsf{true} : \mathsf{bool}} \xrightarrow{(\mathsf{TUP})} \xrightarrow{(\mathsf{TUP})} \xrightarrow{(\mathsf{ABS})} \xrightarrow{(\mathsf{UNIT})} \xrightarrow{(\mathsf{UNIT})} \xrightarrow{(\mathsf{APP})} \xrightarrow{(\mathsf{APP})} \xrightarrow{(\mathsf{APP})}
```

Example: what's the type?

Let's derive that

$$\cdot \vdash (\lambda x : \mathsf{unit}. \langle x, \mathsf{true} \rangle) \langle \rangle : \mathsf{unit} \times \mathsf{bool}$$

by using the rules.

$$\frac{x: \textbf{unit} \in \cdot, x: \textbf{unit}}{\cdot, x: \textbf{unit} \vdash x: \textbf{unit}} \xrightarrow{(\text{VAR})} \frac{1}{\cdot, x: \textbf{unit} \vdash \textbf{true} : \textbf{bool}} \xrightarrow{(\text{TRUE})} \xrightarrow{(\text{TUP})} \xrightarrow{(\text{TUP})} \xrightarrow{(\text{ABS})} \xrightarrow{(\text{UNIT})} \xrightarrow{(\text{UNIT})} \xrightarrow{(\text{APP})} \xrightarrow{(\text{APP})$$

Homework Foreshadowing

That looks like a trace of a typechecking algorithm!

Get Hype.

The Future is Bright

- How can you use basic algebra to manipulate types?
- How do types and programs relate to logical proofs?
- How can we automatically fold (and unfold) any recursive type?
- How can types allow us to do safe imperative programming?
- Can we make it so that programs that typecheck iff they're correct?