Substructural Logic (Linear Logic and Linear Type Systems)

Hype for Types

September 30, 2024

Hype for Types

 → September 30, 2024 1/26

э

What We'll Talk About

• What it means for a logic to be "substructural"

What We'll Talk About

- What it means for a logic to be "substructural"
- A case study of a particular substructural logic (linear logic)

- What it means for a logic to be "substructural"
- A case study of a particular substructural logic (linear logic)
- Ok this is cool, but does this work in the real world? (If we have time)

Substructural Logic

			pes	

2

▶ < ∃ >

The constructive logic we have been working with so far has the following admissible rules, which we call "structural properties" of the logic:

$$\frac{\Gamma \vdash C}{\Gamma, A \vdash C} (WEAK) \qquad \qquad \frac{\Gamma, A, A \vdash C}{\Gamma, A \vdash C} (CNTR)$$
$$\frac{\Gamma, A, B \vdash C}{\Gamma, B, A \vdash C} (EXCH)$$

What happens if you remove some of these structural properties?

What happens if you remove some of these structural properties? You would get a new logical system!

• Affine Logic: no contraction (Use premises at most once)

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)
- Ordered Logic: no weakening, contraction, or exchange (Use premises exactly once and order matters)

What happens if you remove some of these structural properties? You would get a new logical system!

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)
- Ordered Logic: no weakening, contraction, or exchange (Use premises exactly once and order matters)

Question

What are the consequences of not having these structural properties?

What happens if you remove some of these structural properties? You would get a new logical system!

- Affine Logic: no contraction (Use premises at most once)
- Relevance Logic: no weakening (Use premises at least once)
- Linear Logic: no weakening or contraction (Use premises exactly once)
- Ordered Logic: no weakening, contraction, or exchange (Use premises exactly once and order matters)

Question

What are the consequences of not having these structural properties?

Today, we'll be focusing on *linear logic*, and how we can relax it a little bit to get a very useful programming language.

Linear Logic

s

2

・ロト ・四ト ・ヨト ・ヨト

The moon is made of green cheese. Therefore, you come to hype for types today.

Question Is this logical?

э

→

- (日)

Different Interpretation of Implication

Constructive logic interprets $A \Rightarrow B$ as "If you give me A is true, then I give you B is true". But what it really says is "If you give me as many copy of A as I need, then I give you B is true".

Different Interpretation of Implication

Constructive logic interprets $A \Rightarrow B$ as "If you give me A is true, then I give you B is true". But what it really says is "If you give me as many copy of A as I need, then I give you B is true".

Idea

The problem of previous example is that to prove the conclusion we only need zero copies of the assumption, hence lacking "relevance".

Different Interpretation of Implication

Constructive logic interprets $A \Rightarrow B$ as "If you give me A is true, then I give you B is true". But what it really says is "If you give me as many copy of A as I need, then I give you B is true".

Idea

The problem of previous example is that to prove the conclusion we only need zero copies of the assumption, hence lacking "relevance".

Idea

We need a logic that forces relevance.

A B M A B M

Is Logic Logical?

You and your friends go to the hip new spot: the constructive logic cafe! You have \$10. On theme, the menu says:

- $6 \Rightarrow Coffee$
- $6 \Rightarrow Muffin$

¹You have a lot of friends

Is Logic Logical?

You and your friends go to the hip new spot: the constructive logic cafe! You have \$10. On theme, the menu says:

- $6 \Rightarrow Coffee$
- $6 \Rightarrow Muffin$

To the owner's dismay, bound by the laws of constructive logic, you walk out with their entire stock of muffins and a coffee.¹

Question

Is this logical?

¹You have a lot of friends

Hype for Types

Is Logic Logical?

You and your friends go to the hip new spot: the constructive logic cafe! You have \$10. On theme, the menu says:

- $6 \Rightarrow Coffee$
- $6 \Rightarrow Muffin$

To the owner's dismay, bound by the laws of constructive logic, you walk out with their entire stock of muffins and a coffee.¹

Question

Is this logical?

Idea

The problem is that "regular" logic allows us to freely duplicate assumptions.

Idea

We need a logic that limits usage.

¹You have a lot of friends

Hype for Types

イロト イポト イヨト イヨト

э

Malloc is Scary...

Consider the following C code:

```
1 int main () {
2     char *str;
3     str = (char *) malloc(13);
4     strcpy(str, "hypefortypes");
5     free(str);
6     return(0);
7 }
```

In C, we have to make sure we allocate and deallocate every memory cell exactly once.

3

Malloc is Scary...

Consider the following C code:

```
1 int main () {
2     char *str;
3     str = (char *) malloc(13);
4     strcpy(str, "hypefortypes");
5     free(str);
6     return(0);
7 }
```

In C, we have to make sure we allocate and deallocate every memory cell exactly once.

Question Is there a way to make our *types* guarantee correctness?

	Types

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be *persistent*, but rather *ephemeral*.

	for	

The Problem With Constructive Logic

In "normal" constructive logic, we have no concept of state.

Big Idea

Proofs should no longer be *persistent*, but rather *ephemeral*.

Persistence is due to implicit **structural rules**: weakening and contraction.

Weakening

```
1 int main() {
2 int *x = (int *) malloc(sizeof(int));
3 *x = 3;
4 return 0;
5 }
```

э

イロト イボト イヨト イヨト

Weakening

```
1 int main() {
   int *x = (int *) malloc(sizeof(int));
2
   *x = 3;
3
   return 0;
4
5 }
```

Weakening: we can "drop" assumptions

$$\frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau}$$
(WEAK)

Hype for Types

3

< □ > < 同 >

Contraction

```
1 void f(int *x) {
    free(x);
2
3 }
4
 int main() {
5
    int *x = (int *) malloc(sizeof(int));
6
   *x = 3;
7
   f(x);
8
    f(x);
9
    return 0;
10
11 }
```

- 20

イロト イボト イヨト イヨト

Contraction

```
1 void f(int *x) {
    free(x);
2
3 }
4
 int main() {
5
    int *x = (int *) malloc(sizeof(int));
6
    *x = 3;
7
   f(x);
8
   f(x);
9
    return 0;
10
11 }
```

Contraction: we can "duplicate" assumptions

$$\frac{\Gamma, x_1: \tau, x_2: \tau \vdash e: \tau'}{\Gamma, x: \tau \vdash [x, x/x_1, x_2]e: \tau'}$$
(CNTR)

3

< □ > < 同 >

Introduction to Linear Logic

In linear logic, we have neither weakening nor contraction.

- Requirement that we use each piece of data *exactly* once no duplication, no dropping
- Comes with an inherent idea of "resources" that are used up
- Allows us to write safe, stateful (imperative!) programs

The Linear Rules

s

2

Identity

Constructive Logic

$$\frac{A\in \Gamma}{\Gamma\vdash A}\;(\mathrm{Hyp})$$

Hype	

Identity

Constructive Logic

Linear Logic

$$\frac{A \in \Gamma}{\Gamma \vdash A} (\mathrm{Hyp})$$

 $\overline{A \vdash A}$ (Hyp)

< □ > < 同 >

	for	

2

Identity

Constructive LogicLinear Logic $\frac{A \in \Gamma}{\Gamma \vdash A} (Hyp)$ $\frac{A \vdash A}{A \vdash A} (Hyp)$

Intuition

"Given A and nothing else, we can use up A"

3

イロト 不得 トイヨト イヨト

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} (\land \mathbf{I})$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} (\land \mathbf{E1}) \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} (\land \mathbf{E2})$$

2

・ロト ・四ト ・ヨト ・ヨト

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} (\land I)$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} (\land E1) \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} (\land E2)$$

Linear Logic

Hype		

Image: A matrix

2

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} (\land I)$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} (\land E1) \qquad \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} (\land E2)$$

Linear Logic

$$\frac{\Delta_1 \vdash A_1 \quad \Delta_2 \vdash A_2}{\Delta_1, \Delta_2 \vdash A_1 \otimes A_2} \ (\otimes I)$$

2

イロト イヨト イヨト

Constructive Logic

$$\frac{\Gamma \vdash A_1 \qquad \Gamma \vdash A_2}{\Gamma \vdash A_1 \land A_2} \ (\land \mathrm{I})$$

$$\frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_1} \ (\land \text{E1}) \qquad \qquad \frac{\Gamma \vdash A_1 \land A_2}{\Gamma \vdash A_2} \ (\land \text{E2})$$

Linear Logic

$$\frac{\Delta_1 \vdash A_1 \quad \Delta_2 \vdash A_2}{\Delta_1, \Delta_2 \vdash A_1 \otimes A_2} \ (\otimes I)$$

$$\frac{\Delta \vdash A_1 \otimes A_2 \quad \Delta', A_1, A_2 \vdash C}{\Delta, \Delta' \vdash C} \ (\otimes E)$$

Image: A matrix

2

Constructive Logic

$$\frac{\Gamma \vdash A_{1}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{1}) \qquad \frac{\Gamma \vdash A_{2}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{2}) \\
\frac{\Gamma \vdash A_{1} \lor A_{2} \qquad \Gamma, A_{1} \vdash B \qquad \Gamma, A_{2} \vdash B}{\Gamma \vdash B} (\lor E)$$

	for	

2

・ロト ・四ト ・ヨト ・ヨト

Constructive Logic

$$\frac{\Gamma \vdash A_{1}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{1}) \qquad \frac{\Gamma \vdash A_{2}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{2}) \\
\frac{\Gamma \vdash A_{1} \lor A_{2} \qquad \Gamma, A_{1} \vdash B \qquad \Gamma, A_{2} \vdash B}{\Gamma \vdash B} (\lor E)$$

Linear Logic

Hype	

2

Image: A matrix

Constructive Logic

$$\frac{\Gamma \vdash A_1}{\Gamma \vdash A_1 \lor A_2} (\lor I_1) \qquad \frac{\Gamma \vdash A_2}{\Gamma \vdash A_1 \lor A_2} (\lor I_2)$$
$$\frac{\Gamma \vdash A_1 \lor A_2}{\Gamma \vdash B} \qquad \frac{\Gamma, A_2 \vdash B}{\Gamma \vdash B} (\lor E)$$

Linear Logic

$$\frac{\Delta \vdash A_1}{\Delta \vdash A_1 \oplus A_2} (\oplus I1)$$

2

イロト イヨト イヨト

Constructive Logic

$$\frac{\Gamma \vdash A_{1}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{1}) \qquad \frac{\Gamma \vdash A_{2}}{\Gamma \vdash A_{1} \lor A_{2}} (\lor I_{2})$$
$$\frac{\Gamma \vdash A_{1} \lor A_{2} \qquad \Gamma, A_{1} \vdash B \qquad \Gamma, A_{2} \vdash B}{\Gamma \vdash B} (\lor E)$$

Linear Logic

$$\frac{\Delta \vdash A_1}{\Delta \vdash A_1 \oplus A_2} (\oplus I1) \qquad \qquad \frac{\Delta \vdash A_2}{\Delta \vdash A_1 \oplus A_2} (\oplus I2)$$

2

18 / 26

イロト イヨト イヨト

Constructive Logic

$$\frac{\Gamma \vdash A_1}{\Gamma \vdash A_1 \lor A_2} (\lor I_1) \qquad \frac{\Gamma \vdash A_2}{\Gamma \vdash A_1 \lor A_2} (\lor I_2)$$
$$\frac{\Gamma \vdash A_1 \lor A_2}{\Gamma \vdash B} \qquad \frac{\Gamma, A_2 \vdash B}{\Gamma \vdash B} (\lor E)$$

Linear Logic

$$\frac{\Delta \vdash A_1}{\Delta \vdash A_1 \oplus A_2} (\oplus I1) \qquad \qquad \frac{\Delta \vdash A_2}{\Delta \vdash A_1 \oplus A_2} (\oplus I2)$$
$$\frac{\Delta \vdash A_1 \oplus A_2}{\Delta, \Delta' \vdash B} \Delta', A_2 \vdash B (\oplus E)$$

3

18 / 26

イロン 不聞 とくほとう ほとう

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} (\supset I) \qquad \qquad \frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} (\supset E)$$

2

イロト イポト イヨト イヨト

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} (\supset I) \qquad \qquad \frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} (\supset E)$$

Linear Logic

	Types

2

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} (\supset I) \qquad \qquad \frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} (\supset E)$$

Linear Logic

$$\frac{\Delta, A_1 \vdash A_2}{\Delta \vdash A_1 \multimap A_2} \ (\multimap I)$$

2

ヨト・イヨト

Image: A matrix

Constructive Logic

$$\frac{\Gamma, A_1 \vdash A_2}{\Gamma \vdash A_1 \supset A_2} (\supset I) \qquad \qquad \frac{\Gamma \vdash A_1 \supset A_2 \quad \Gamma \vdash A_1}{\Gamma \vdash A_2} (\supset E)$$

Linear Logic

$$\frac{\Delta, A_1 \vdash A_2}{\Delta \vdash A_1 \multimap A_2} (\multimap I) \qquad \qquad \frac{\Delta \vdash A_1 \multimap A_2 \quad \Delta' \vdash A_1}{\Delta, \Delta' \vdash A_2} (\multimap E)$$

Image: A matrix

2

Model Real Worlds Using Linear Logic

Recall the Constructive Logic Cafe

- $6 \Rightarrow Coffee$
- $6 \Rightarrow Muffin$

We have 10 to spend and we are both hungry and thirsty.

э

A B < A B </p>

- ∢ /⊐ >

Model Real Worlds Using Linear Logic

Recall the Constructive Logic Cafe

- $6 \Rightarrow Coffee$
- $6 \Rightarrow Muffin$

We have \$10 to spend and we are both hungry and thirsty.

Stuctural Logic Causes Inflation!

Well $(A \Rightarrow B) \land (A \Rightarrow C) \Rightarrow (A \Rightarrow B \land C)$ so we can buy both! This doesn't seem right...

3

Time for a Rebrand!

Rebranding to the Linear Logic Cafe^a

- ^aLLC LLC
- \$6 Coffee
- \$6 Muffin

Hyp		

イロト イポト イヨト イヨト

э

Time for a Rebrand!

Rebranding to the Linear Logic Cafe^a

^aLLC LLC

- \$6 Coffee
- \$6 Muffin

Linear Logic Does Not

 $(A \multimap B) \otimes (A \multimap C) \not\multimap (A \multimap B \otimes C)$ so we cannot buy both! Capitalism is saved!^a

^aWhat have we done...

イロト 不得 トイヨト イヨト 二日

The Actual Real World

			pes	

æ

Imagine a substructural programming language... what would that look like?

Image: A matrix

э

Imagine a substructural programming language... what would that look like?

Complaints

• I like using variables more than once!

Imagine a substructural programming language... what would that look like?

Complaints

- I like using variables more than once!
- I want to easily forget about some values (e.g. after an effectful computation)

Imagine a substructural programming language... what would that look like?

Complaints

- I like using variables more than once!
- I want to easily forget about some values (e.g. after an effectful computation)
- You're telling me the order I declare variables should matter!??

Imagine a substructural programming language... what would that look like?

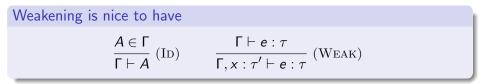
Complaints

- I like using variables more than once!
- I want to easily forget about some values (e.g. after an effectful computation)
- You're telling me the order I declare variables should matter!??

These are fair criticisms! So let's compromise!

(B)

Your criticisms are valid! I'll give you back normal identity rules, and therefore weakening:



Your criticisms are valid! I'll give you back normal identity rules, and therefore weakening:

Weakening is nice to have $\frac{A \in \Gamma}{\Gamma \vdash A} (ID) \qquad \frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau} (WEAK)$

And exchange is...

3 × < 3 ×

Your criticisms are valid! I'll give you back normal identity rules, and therefore weakening:

Weakening is nice to have $\frac{A \in \Gamma}{\Gamma \vdash A} (ID) \qquad \frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau} (WEAK)$

And exchange is... yeah you can have that too

프 에 에 프 어디

Your criticisms are valid! I'll give you back normal identity rules, and therefore weakening:

Weakening is nice to have $\frac{A \in \Gamma}{\Gamma \vdash A} (ID) \qquad \frac{\Gamma \vdash e : \tau}{\Gamma, x : \tau' \vdash e : \tau} (WEAK)$

And exchange is... yeah you can have that too But, can we negotiate on contraction?

ヨト・イヨト・

Contraction: The Idea $\frac{\Gamma, x_1 : \tau, x_2 : \tau \vdash e : \tau'}{\Gamma, x : \tau \vdash [x, x/x_1, x_2]e : \tau'} (CNTR)$

э

Contraction: The Idea

$$\frac{\Gamma, x_1: \tau, x_2: \tau \vdash e: \tau'}{\Gamma, x: \tau \vdash [x, x/x_1, x_2]e: \tau'}$$
(CNTR)

We can use our variables more than once.

	Туре	

э

Contraction: The Idea

$$\frac{\Gamma, x_1: \tau, x_2: \tau \vdash e: \tau'}{\Gamma, x: \tau \vdash [x, x/x_1, x_2]e: \tau'}$$
(CNTR)

We can use our variables more than once.

Why not contraction?

Benefits!

• We can never double free!

3

• • = • • = •

< □ > < 凸

Contraction: The Idea

$$\frac{\Gamma, x_1: \tau, x_2: \tau \vdash e: \tau'}{\Gamma, x: \tau \vdash [x, x/x_1, x_2]e: \tau'}$$
(CNTR)

We can use our variables more than once.

Why not contraction?

Benefits!

- We can never double free!
- We cannot write race conditions!

э

A B < A B </p>

Contraction: The Idea

$$\frac{\Gamma, x_1: \tau, x_2: \tau \vdash e: \tau'}{\Gamma, x: \tau \vdash [x, x/x_1, x_2]e: \tau'}$$
(CNTR)

We can use our variables more than once.

Why not contraction?

Benefits!

- We can never double free!
- We cannot write race conditions!
- We get automatic memory management without the cost of GC!

(B)

Let's Try It!

s

2

<ロト <問ト < 目と < 目と