Polymorphism: What's the deal with 'a?

Hype for Types

October 21, 2024

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

Polymorphism

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

|dentity
Recall lambda abstraction from the Simply Typed Lambda Calculus

Mx:thFe:7
Mr-AXx:7)e:7—171

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 3/23

|dentity
Recall lambda abstraction from the Simply Typed Lambda Calculus

Mx:thFe:7
Mr-AXx:7)e:7—171

Notice how we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types):

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 3/23

|dentity
Recall lambda abstraction from the Simply Typed Lambda Calculus

Mx:thFe:7
Fr-Xx:7)e:7—=1

Notice how we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types):

id = A(x : Nat)x

But this only works on Nats!

id true (xtype error!x*)

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 3/23

|dentity
Recall lambda abstraction from the Simply Typed Lambda Calculus

Mx:thFe:7
FrEXx:7)e:7— 71

Notice how we must type annotate every lambda.
Let's write the identity function (assuming some reasonable base types):

id = A(x : Nat)x

But this only works on Nats!

id true (xtype error!x*)

If we want it to work for Bools, we'd have to write a separate function:
id2 = A\(x : Bool)x

This seems really annoying >: (

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 3/23

What does SML do?

val id = fn (x : ’a) => x
val _ = id 1

val _ = id true

val = id "nice"

id : ’a -> ’a

[} = =

Hype for Types Polymorphism: What's the deal with 'a?

What does SML do?

val id = fn (x : ’a) => x

val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

Question

But what /s ’a? Is it a type? J

[} = =

Hype for Types Polymorphism: What's the deal with 'a?

What does SML do?

val id = fn (x : ’a) => x

val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

Question

But what /s ’a? Is it a type? J

If id 1 type checks then 1 : 2a?7??

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 4/23

Polymorphism

@ Intuitively, we'd like to interpret ’a -> ’a as “for all ’a, ’a -> ’a

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

Polymorphism

@ Intuitively, we'd like to interpret ’a -> ’a as “for all ’a, ’a -> ’a

@ The “for all” is implicit.

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 5/23

Polymorphism

@ Intuitively, we'd like to interpret ’a -> ’a as “for all ’a, ’a -> ’a
@ The “for all” is implicit.

@ This is great for programming, but confusing to formalize.

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 5/23

Polymorphism

@ Intuitively, we'd like to interpret ’a -> ’a as “for all ’a, ’a -> ’a
@ The “for all” is implicit.
@ This is great for programming, but confusing to formalize.

Let's make it explicit!

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 5/23

Polymorphism

@ Intuitively, we'd like to interpret ’a -> ’a as “for all ’a, ’a -> ’a
@ The “for all” is implicit.
@ This is great for programming, but confusing to formalize.

Let's make it explicit!

’a -> ’a=—Va.a—a

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 5/23

Polymorphism

@ Intuitively, we'd like to interpret ’a -> ’a as “for all ’a, ’a -> ’a"
@ The “for all” is implicit.
@ This is great for programming, but confusing to formalize.

Let's make it explicit!
’a => ’a=—=>VYa.a—a

The ticks are no longer needed, as we've explicitly bound a as a type
variable.

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 5/23

Polymorphism

How do we construct a value of type Va.a — a in our new formalism?

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

Polymorphism

How do we construct a value of type Va.a — a in our new formalism? We

might suggest A(x : a)x, but once again the type variable is being bound
implicitly.

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 6/23

Polymorphism

How do we construct a value of type Va.a — a in our new formalism? We

might suggest A(x : a)x, but once again the type variable is being bound
implicitly.
Let's bind it explicitly!

A(a: Type)A(x : a)x : Va.a — a

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 6/23

Polymorphism

How do we construct a value of type Va.a — a in our new formalism? We

might suggest A(x : a)x, but once again the type variable is being bound
implicitly.
Let's bind it explicitly!

A(a: Type)A(x : a)x : Va.a — a

How do we use this?

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 6/23

Polymorphism

How do we construct a value of type Va.a — a in our new formalism? We

might suggest A(x : a)x, but once again the type variable is being bound
implicitly.
Let's bind it explicitly!

A(a: Type)A(x : a)x : Va.a — a
How do we use this?

(A(a: Type)A(x : a)x)[Nat] = A(x : Nat)x

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 6/23

System F

The polymorphic lambda calculus we've developed is called System F.
Let's write a grammar!

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 7/23

System F

The polymorphic lambda calculus we've developed is called System F.
Let's write a grammar!

e = X term variable
| A(x:7)e term abstraction
| A(t: Type)e type abstraction
| e1e term application
| el[r] type application
T =t type variable
| 71— 7 function type
| Vt.r polymorphic type

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 7/23

System F

And some inference rules!

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

System F
And some inference rules!
te A AF 1 type AF 1 type At T type
At type AF 1 — ™ type A FVt.T type

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 8/23

System F

And some inference rules!

te A Al 7 type AF 1 type A tF T type
At type AF 1 — ™ type A FVt.T type
x:Tterl ATox:7he:7 AbT type
ATEx:T ATEMNx:T)e:T7— 7
At;THe:T ATke:T—717 ATke:T
AT HA(t: Type)e : Vt.r ATFee 7

A;THe:Vtr AFT type
AT Eelr]:7[r'/t]

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 8/23

System F

And some inference rules!

te A Al 7 type AF 1 type A tF T type
At type AF 1 — ™ type A FVt.T type
x:Tterl ATox:7he:7 AbT type
ATEx:T ATEMNx:T)e:T7— 7
At;THe:T ATke:T—717 ATke:T
AT HA(t: Type)e : Vt.r ATFee 7

A;THe:Vtr AFT type
AT Ee[r] [/t]

Question J

Do we need anything else? What about product types? Sum types?

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 8/23

System F

And some inference rules!

te A Al 7 type AF 1 type A tF T type
At type AF 1 — ™ type A FVt.T type
x:Tterl ATox:7he:7 AbT type
ATEx:T ATEMNx:T)e:T7— 7
At;ThHe:T ATke:T—717 ATke:T
AT HA(t: Type)e : Vt.r ATFee 7

A;THe:Vtr AFT type
AT Ee[r] [/t]

Question J

Do we need anything else? What about product types? Sum types?

We'll get back to that later...
October 21, 2024 8/23

Some F-ing Functions

swap:Vabc(a—b—c)—(b—a—c)=

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

Some F-ing Functions

swap:Vabc(a—b—c)—(b—a—c)=

Aabc:Type)\(f:a—b— c)Ax:b)A(y:a)f y x

=] =) = = PENE
Hype for Types Polymorphism: What's the deal with 'a?

Some F-ing Functions

swap:Vabc(a—b—c)—=(b—a—c)=
Aabc:Type)\(f:a—b— c)Ax:b)A(y:a)f y x

compose :Vabc.(a—b) > (b—c)—(a—c)=

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 9/23

Some F-ing Functions

swap:VYabc(a—b—c)—(b—>a—c)=
Aabc:Type)\(f:a—b— c)Ax:b)A(y:a)f y x
compose :Vabc.(a—b) > (b—c)—(a—c)=

Aa b c:Type)\(f:a— b)A(g: b — c)\(x: a)g(f x)

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 9/23

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really Va.a — a?

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 10/23

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really Va.a — a?
Consider:

fun hmm (id : ’a -> ’a)

= (id 1, id true)

Hype for Types Polymorphism: What's the deal with 'a?

October 21, 2024 10/23

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really Va.a — a?
Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions.

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 10/23

Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is >a -> ’a always really Va.a — a?
Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions. Our function here is equivalent to:

hmm = A(a : Type)\(id : a — a)(id 1,id true)
Which is not the same as:
hmm = \(id : Va.a — a)(id[int] 1, id[bool] true)

Why? Because type inference for System F is undecidable!

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 10/23

What about exists?

type?

If we can express “for all” as a type, can we express “there exists” as a

o F = = Qe
Hype for Types Polymorphism: What's the deal with 'a?

What about exists?

If we can express “for all” as a type, can we express “there exists” as a
type?

Vt.t — t means “for any type t: if you give me a t, I'll give you a t"

So Jt.t — t should probably mean “there is some specific type t, and if
you give me that t, I'll give you a t”

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 11/23

What about exists?

If we can express “for all” as a type, can we express “there exists” as a
type?
Vt.t — t means “for any type t: if you give me a t, I'll give you a t"

So Jt.t — t should probably mean “there is some specific type t, and if
you give me that t, I'll give you a t”

Question J

Does this sound similar to anything in SML?

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 11/23

Existentialism == Modules!

signature S
sig
type t
val x : t
val £ : t -> t
end

is basically equivalent to:
Jtd{x:t,f:t—t}
or even more simply:

Jt.t x (t = t)

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 12/23

Existentialism == Modules!

signature S

sig

type t

val x : t

val £ : t -> t
end

is basically equivalent to:
Jtd{x:t,f:t—t}
or even more simply:

Jt.t x (t = t)

Main Idea

We use signatures to represent existential types!

i = = E—e

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 12/23

Existentialism == Modules!
Question

What is a value of type Jt.77

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

Existentialism == Modules!

Question

What is a value of type Jt.77

Answer: A module!

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

Existentialism == Modules!

What is a value of type Jt.77

Question J

Answer: A module!

structure M : S =
struct
type t = int
val x = 150
val f
end

fn x => x + 1

is a value of type Jt.{x:t,f:t—t}

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 13/23

Existentialism == Modules!

To unpack a structure, use the open keyword!

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

Existentialism == Modules!

To unpack a structure, use the open keyword!

open M gives me:
@ atypet
@ a value of type t

@ avalueof typet > t

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 14 /23

Existentialism == Modules!

To unpack a structure, use the open keyword!

open M gives me:
@ atypet
@ a value of type t

@ avalueof typet > t

In other words, | obtain the type t and value of type t * (t -> t) that
M implements!

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 14 /23

Existentialism == Modules!

To unpack a structure, use the open keyword!

open M gives me:
@ atypet
@ a value of type t

@ avalueof typet > t

In other words, | obtain the type t and value of type t * (t -> t) that
M implements!

Main Idea

opening a value (module) of type 3t.7 gives us a type t and a value of
type T

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 14 /23

Typechecking Rules

A, tF T type A;THe:[p/tlt AF p type
A Jt.T type A;T & struct type t = p in e : dt.7

ATEM:3tr At;Tx:the: 7 AFT type
A;THopen M as t,xine: 7

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 15/23

Example: Stacks!

signature STACK =
sig
type t
val empty : t
val push : int -> t -> ¢t
val pop : t -> (int * t) option
end

structure ListStack : STACK =
struct
type t = int 1list
val empty = []

fun push x xs = x :: Xs
fun pop [] = NONE
| pop (x :: xs) = SOME (x, xs)
end

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 16 /23

Example: Stacks!

Stack =

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

Example: Stacks!

Stack =

It.{empty : t, push : int — t — t, pop : t — (int X t) option}

ListStack : Stack =

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 17/23

Example: Stacks!

Stack =

It.{empty : t, push : int — t — t, pop : t — (int X t) option}

ListStack : Stack =

struct type t = int list in

{empty = Nil,
push = Cons,
pop = ...}

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 17 /23

What about functors?

signature STACK =
sig
type t
val empty : t
val push : int -> t -> t
val pop : t -> (int * t) option
end

functor MkDoubleStack (S : STACK) : STACK =
struct
type t = S.t
val empty = S.empty
fun push x s = S.push x (S.push x s)
val pop = S.pop
end

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 18/23

What about functors?

MkDoubleStack : Stack — Stack =

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

What about functors?

MkDoubleStack : Stack — Stack =
A(S @ Stack).

open S as t'.s in

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

What about functors?

MkDoubleStack : Stack — Stack =
A(S @ Stack).
open S as t',s in
struct type t = t' in
{empty = s.empty,
push = X\(x : int).(s.push x) o (s.push x)

pop = s.pop}

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 19/23

We don’t need no type constructors (except V and —)
Question

Can we encode A x B in System F?

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

We don’t need no type constructors (except V and —)
Question

Can we encode A x B in System F?

Answer: Yes! But How?

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

We don’t need no type constructors (except V and —)

Question J

Can we encode A x B in System F?

Answer: Yes! But How?

What can you do with a value of type A x B?

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 20/23

We don't need no type constructors (except V and —)

Can we encode A x B in System F?

Question J

Answer: Yes! But How?
What can you do with a value of type A x B?
Idea

A product is defined by the fact that, given a value of type A x B, we have
access to both a value of type A and a value of type B

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 20/23

We don't need no type constructors (except V and —)

Question J

Can we encode A x B in System F?

Answer: Yes! But How?
What can you do with a value of type A x B?
Idea

A product is defined by the fact that, given a value of type A x B, we have
access to both a value of type A and a value of type B

AxB=VYR.(A— B —R)—R

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 20/23

Product Types in System F

AxB=VR(A—-B—R)—R

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

Product Types in System F

AxB=VR(A—-B—R)—R
pair :YABA— B — AxB=

NMAB) Ax:A)ANy:B)NR) NM(f:A—=B—=R)fxy

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 21/23

Product Types in System F

AxB=VR(A—-B—R)—R
pair :YABA— B — AxB=
NAB)AMx:A) XMy :B)yNR)N(f:A—-B—R)fxy
fst VABAxB— A=
(A B) A(p: Ax B) p[A] (A(x : A) A(y : B) x)

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 21/23

Product Types in System F

AxB=VR(A—-B—R)—R
pair : YA B.A— B — Ax B =
MAB)Mx:A) Ay :BYNR)Mf:A—B—R)fxy
fst :YABAXB— A=
NA B) A(p: Ax B) p[A] (A(x : A) Ay : B) x)
snd :VABAxXB— B=
NA B) Mp: Ax B) p[B] (A(x : A) A(y : B) y)

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 21/23

Sum Types?

What can we do with a value of type A+ B?

o = = £ DA
Hype for Types Polymorphism: What's the deal with 'a?

Sum Types?

What can we do with a value of type A+ B?

Idea

A sum is defined by the fact that, given a value of type A + B, we have
access to either a value of type A or a value of type B

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 22/23

Sum Types?

What can we do with a value of type A+ B?

Idea

A sum is defined by the fact that, given a value of type A + B, we have
access to either a value of type A or a value of type B

A+B=VR(A—-R)—(B—R)— R

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 22/23

Sum Types

A+B=VYR(A—R)—(B—R)—>R

=] & = E DA
Hype for Types Polymorphism: What's the deal with 'a?

Sum Types
A+B=VR(A—-R)—-(B—-R)— R

InjectLeft : VA B.A— A+ B =

A(A B) M(x : A) A(R) A(left : A— R) X(right : B — R) left x

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 23/23

Sum Types

A+B=VR(A—-R)—-(B—-R)— R
InjectLeft : VA B.A— A+ B =
A(A B) A(x : A) A(R) A(left : A— R) A(right : B — R) left x
InjectRight : VA B.B — A+ B =

A(A B) M(x : A) A(R) A(left : A — R) A(right : B — R) right x

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 23/23

Sum Types

A+B=VR(A—-R)—-(B—-R)— R
InjectLeft : VA B.A— A+ B =
A(A B) A(x : A) A(R) A(left : A— R) A(right : B — R) left x
InjectRight : VA B.B — A+ B =

A(A B) M(x : A) A(R) A(left : A — R) A(right : B — R) right x

Question J

What about case?

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 23/23

Sum Types

A+B=VR(A—-R)—-(B—-R)— R
InjectLeft : VA B.A— A+ B =
A(A B) A(x : A) A(R) A(left : A— R) A(right : B — R) left x
InjectRight : VA B.B — A+ B =

A(A B) M(x : A) A(R) A(left : A — R) A(right : B — R) right x

Question J

What about case?

Answer: An encoded value of type A+ B is already a case!

Hype for Types Polymorphism: What's the deal with 'a? October 21, 2024 23/23

	Polymorphism

