
Polymorphism: What’s the deal with ’a?

Hype for Types

October 21, 2024

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 1 / 23



Polymorphism

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 2 / 23



Identity
Recall lambda abstraction from the Simply Typed Lambda Calculus

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λ(x : τ)e : τ → τ ′

Notice how we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types):

id = λ(x : Nat)x

But this only works on Nats!

id true (*type error!*)

If we want it to work for Bools, we’d have to write a separate function:

id2 = λ(x : Bool)x

This seems really annoying >: (

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 3 / 23



Identity
Recall lambda abstraction from the Simply Typed Lambda Calculus

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λ(x : τ)e : τ → τ ′

Notice how we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types):

id = λ(x : Nat)x

But this only works on Nats!

id true (*type error!*)

If we want it to work for Bools, we’d have to write a separate function:

id2 = λ(x : Bool)x

This seems really annoying >: (

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 3 / 23



Identity
Recall lambda abstraction from the Simply Typed Lambda Calculus

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λ(x : τ)e : τ → τ ′

Notice how we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types):

id = λ(x : Nat)x

But this only works on Nats!

id true (*type error!*)

If we want it to work for Bools, we’d have to write a separate function:

id2 = λ(x : Bool)x

This seems really annoying >: (

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 3 / 23



Identity
Recall lambda abstraction from the Simply Typed Lambda Calculus

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λ(x : τ)e : τ → τ ′

Notice how we must type annotate every lambda.
Let’s write the identity function (assuming some reasonable base types):

id = λ(x : Nat)x

But this only works on Nats!

id true (*type error!*)

If we want it to work for Bools, we’d have to write a separate function:

id2 = λ(x : Bool)x

This seems really annoying >: (
Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 3 / 23



What does SML do?

val id = fn (x : ’a) => x

val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

Question

But what is ’a? Is it a type?

If id 1 type checks then 1 : ’a???

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 4 / 23



What does SML do?

val id = fn (x : ’a) => x

val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

Question

But what is ’a? Is it a type?

If id 1 type checks then 1 : ’a???

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 4 / 23



What does SML do?

val id = fn (x : ’a) => x

val _ = id 1

val _ = id true

val _ = id "nice"

id : ’a -> ’a

Question

But what is ’a? Is it a type?

If id 1 type checks then 1 : ’a???

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 4 / 23



Polymorphism

Intuitively, we’d like to interpret ’a -> ’a as “for all ’a, ’a -> ’a”

The “for all” is implicit.

This is great for programming, but confusing to formalize.

Let’s make it explicit!

’a -> ’a =⇒ ∀a.a → a

The ticks are no longer needed, as we’ve explicitly bound a as a type
variable.

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 5 / 23



Polymorphism

Intuitively, we’d like to interpret ’a -> ’a as “for all ’a, ’a -> ’a”

The “for all” is implicit.

This is great for programming, but confusing to formalize.

Let’s make it explicit!

’a -> ’a =⇒ ∀a.a → a

The ticks are no longer needed, as we’ve explicitly bound a as a type
variable.

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 5 / 23



Polymorphism

Intuitively, we’d like to interpret ’a -> ’a as “for all ’a, ’a -> ’a”

The “for all” is implicit.

This is great for programming, but confusing to formalize.

Let’s make it explicit!

’a -> ’a =⇒ ∀a.a → a

The ticks are no longer needed, as we’ve explicitly bound a as a type
variable.

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 5 / 23



Polymorphism

Intuitively, we’d like to interpret ’a -> ’a as “for all ’a, ’a -> ’a”

The “for all” is implicit.

This is great for programming, but confusing to formalize.

Let’s make it explicit!

’a -> ’a =⇒ ∀a.a → a

The ticks are no longer needed, as we’ve explicitly bound a as a type
variable.

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 5 / 23



Polymorphism

Intuitively, we’d like to interpret ’a -> ’a as “for all ’a, ’a -> ’a”

The “for all” is implicit.

This is great for programming, but confusing to formalize.

Let’s make it explicit!

’a -> ’a =⇒ ∀a.a → a

The ticks are no longer needed, as we’ve explicitly bound a as a type
variable.

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 5 / 23



Polymorphism

Intuitively, we’d like to interpret ’a -> ’a as “for all ’a, ’a -> ’a”

The “for all” is implicit.

This is great for programming, but confusing to formalize.

Let’s make it explicit!

’a -> ’a =⇒ ∀a.a → a

The ticks are no longer needed, as we’ve explicitly bound a as a type
variable.

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 5 / 23



Polymorphism

How do we construct a value of type ∀a.a → a in our new formalism?

We
might suggest λ(x : a)x , but once again the type variable is being bound
implicitly.
Let’s bind it explicitly !

Λ(a : Type)λ(x : a)x : ∀a.a → a

How do we use this?

(Λ(a : Type)λ(x : a)x)[Nat] =⇒ λ(x : Nat)x

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 6 / 23



Polymorphism

How do we construct a value of type ∀a.a → a in our new formalism? We
might suggest λ(x : a)x , but once again the type variable is being bound
implicitly.

Let’s bind it explicitly !

Λ(a : Type)λ(x : a)x : ∀a.a → a

How do we use this?

(Λ(a : Type)λ(x : a)x)[Nat] =⇒ λ(x : Nat)x

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 6 / 23



Polymorphism

How do we construct a value of type ∀a.a → a in our new formalism? We
might suggest λ(x : a)x , but once again the type variable is being bound
implicitly.
Let’s bind it explicitly !

Λ(a : Type)λ(x : a)x : ∀a.a → a

How do we use this?

(Λ(a : Type)λ(x : a)x)[Nat] =⇒ λ(x : Nat)x

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 6 / 23



Polymorphism

How do we construct a value of type ∀a.a → a in our new formalism? We
might suggest λ(x : a)x , but once again the type variable is being bound
implicitly.
Let’s bind it explicitly !

Λ(a : Type)λ(x : a)x : ∀a.a → a

How do we use this?

(Λ(a : Type)λ(x : a)x)[Nat] =⇒ λ(x : Nat)x

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 6 / 23



Polymorphism

How do we construct a value of type ∀a.a → a in our new formalism? We
might suggest λ(x : a)x , but once again the type variable is being bound
implicitly.
Let’s bind it explicitly !

Λ(a : Type)λ(x : a)x : ∀a.a → a

How do we use this?

(Λ(a : Type)λ(x : a)x)[Nat] =⇒ λ(x : Nat)x

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 6 / 23



System F

The polymorphic lambda calculus we’ve developed is called System F.
Let’s write a grammar!

e ::= x term variable
| λ(x : τ)e term abstraction
| Λ(t : Type)e type abstraction
| e1e2 term application
| e1[τ ] type application

τ ::= t type variable
| τ1 → τ2 function type
| ∀t.τ polymorphic type

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 7 / 23



System F

The polymorphic lambda calculus we’ve developed is called System F.
Let’s write a grammar!

e ::= x term variable
| λ(x : τ)e term abstraction
| Λ(t : Type)e type abstraction
| e1e2 term application
| e1[τ ] type application

τ ::= t type variable
| τ1 → τ2 function type
| ∀t.τ polymorphic type

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 7 / 23



System F
And some inference rules!

t ∈ ∆
∆ ⊢ t type

∆ ⊢ τ1 type ∆ ⊢ τ2 type

∆ ⊢ τ1 → τ2 type

∆, t ⊢ τ type

∆ ⊢ ∀t.τ type

x : τ ∈ Γ
∆; Γ ⊢ x : τ

∆; Γ, x : τ ⊢ e : τ ′ ∆ ⊢ τ type

∆; Γ ⊢ λ(x : τ)e : τ → τ ′

∆, t; Γ ⊢ e : τ

∆; Γ ⊢ Λ(t : Type)e : ∀t.τ
∆; Γ ⊢ e1 : τ → τ ′ ∆; Γ ⊢ e2 : τ

∆; Γ ⊢ e1e2 : τ
′

∆; Γ ⊢ e : ∀t.τ ∆ ⊢ τ ′ type

∆; Γ ⊢ e[τ ′] : τ [τ ′/t]

Question

Do we need anything else? What about product types? Sum types?

We’ll get back to that later...

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 8 / 23



System F
And some inference rules!

t ∈ ∆
∆ ⊢ t type

∆ ⊢ τ1 type ∆ ⊢ τ2 type

∆ ⊢ τ1 → τ2 type

∆, t ⊢ τ type

∆ ⊢ ∀t.τ type

x : τ ∈ Γ
∆; Γ ⊢ x : τ

∆; Γ, x : τ ⊢ e : τ ′ ∆ ⊢ τ type

∆; Γ ⊢ λ(x : τ)e : τ → τ ′

∆, t; Γ ⊢ e : τ

∆; Γ ⊢ Λ(t : Type)e : ∀t.τ
∆; Γ ⊢ e1 : τ → τ ′ ∆; Γ ⊢ e2 : τ

∆; Γ ⊢ e1e2 : τ
′

∆; Γ ⊢ e : ∀t.τ ∆ ⊢ τ ′ type

∆; Γ ⊢ e[τ ′] : τ [τ ′/t]

Question

Do we need anything else? What about product types? Sum types?

We’ll get back to that later...

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 8 / 23



System F
And some inference rules!

t ∈ ∆
∆ ⊢ t type

∆ ⊢ τ1 type ∆ ⊢ τ2 type

∆ ⊢ τ1 → τ2 type

∆, t ⊢ τ type

∆ ⊢ ∀t.τ type

x : τ ∈ Γ
∆; Γ ⊢ x : τ

∆; Γ, x : τ ⊢ e : τ ′ ∆ ⊢ τ type

∆; Γ ⊢ λ(x : τ)e : τ → τ ′

∆, t; Γ ⊢ e : τ

∆; Γ ⊢ Λ(t : Type)e : ∀t.τ
∆; Γ ⊢ e1 : τ → τ ′ ∆; Γ ⊢ e2 : τ

∆; Γ ⊢ e1e2 : τ
′

∆; Γ ⊢ e : ∀t.τ ∆ ⊢ τ ′ type

∆; Γ ⊢ e[τ ′] : τ [τ ′/t]

Question

Do we need anything else? What about product types? Sum types?

We’ll get back to that later...

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 8 / 23



System F
And some inference rules!

t ∈ ∆
∆ ⊢ t type

∆ ⊢ τ1 type ∆ ⊢ τ2 type

∆ ⊢ τ1 → τ2 type

∆, t ⊢ τ type

∆ ⊢ ∀t.τ type

x : τ ∈ Γ
∆; Γ ⊢ x : τ

∆; Γ, x : τ ⊢ e : τ ′ ∆ ⊢ τ type

∆; Γ ⊢ λ(x : τ)e : τ → τ ′

∆, t; Γ ⊢ e : τ

∆; Γ ⊢ Λ(t : Type)e : ∀t.τ
∆; Γ ⊢ e1 : τ → τ ′ ∆; Γ ⊢ e2 : τ

∆; Γ ⊢ e1e2 : τ
′

∆; Γ ⊢ e : ∀t.τ ∆ ⊢ τ ′ type

∆; Γ ⊢ e[τ ′] : τ [τ ′/t]

Question

Do we need anything else? What about product types? Sum types?

We’ll get back to that later...

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 8 / 23



System F
And some inference rules!

t ∈ ∆
∆ ⊢ t type

∆ ⊢ τ1 type ∆ ⊢ τ2 type

∆ ⊢ τ1 → τ2 type

∆, t ⊢ τ type

∆ ⊢ ∀t.τ type

x : τ ∈ Γ
∆; Γ ⊢ x : τ

∆; Γ, x : τ ⊢ e : τ ′ ∆ ⊢ τ type

∆; Γ ⊢ λ(x : τ)e : τ → τ ′

∆, t; Γ ⊢ e : τ

∆; Γ ⊢ Λ(t : Type)e : ∀t.τ
∆; Γ ⊢ e1 : τ → τ ′ ∆; Γ ⊢ e2 : τ

∆; Γ ⊢ e1e2 : τ
′

∆; Γ ⊢ e : ∀t.τ ∆ ⊢ τ ′ type

∆; Γ ⊢ e[τ ′] : τ [τ ′/t]

Question

Do we need anything else? What about product types? Sum types?

We’ll get back to that later...
Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 8 / 23



Some F-ing Functions

swap : ∀a b c .(a → b → c) → (b → a → c) =

Λ(a b c : Type)λ(f : a → b → c)λ(x : b)λ(y : a)f y x

compose : ∀a b c.(a → b) → (b → c) → (a → c) =

Λ(a b c : Type)λ(f : a → b)λ(g : b → c)λ(x : a)g(f x)

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 9 / 23



Some F-ing Functions

swap : ∀a b c .(a → b → c) → (b → a → c) =

Λ(a b c : Type)λ(f : a → b → c)λ(x : b)λ(y : a)f y x

compose : ∀a b c.(a → b) → (b → c) → (a → c) =

Λ(a b c : Type)λ(f : a → b)λ(g : b → c)λ(x : a)g(f x)

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 9 / 23



Some F-ing Functions

swap : ∀a b c .(a → b → c) → (b → a → c) =

Λ(a b c : Type)λ(f : a → b → c)λ(x : b)λ(y : a)f y x

compose : ∀a b c.(a → b) → (b → c) → (a → c) =

Λ(a b c : Type)λ(f : a → b)λ(g : b → c)λ(x : a)g(f x)

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 9 / 23



Some F-ing Functions

swap : ∀a b c .(a → b → c) → (b → a → c) =

Λ(a b c : Type)λ(f : a → b → c)λ(x : b)λ(y : a)f y x

compose : ∀a b c.(a → b) → (b → c) → (a → c) =

Λ(a b c : Type)λ(f : a → b)λ(g : b → c)λ(x : a)g(f x)

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 9 / 23



Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really ∀a.a → a?

Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions. Our function here is equivalent to:

hmm = Λ(a : Type)λ(id : a → a)(id 1, id true)

Which is not the same as:

hmm = λ(id : ∀a.a → a)(id [int] 1, id [bool ] true)

Why? Because type inference for System F is undecidable!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 10 / 23



Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really ∀a.a → a?
Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions. Our function here is equivalent to:

hmm = Λ(a : Type)λ(id : a → a)(id 1, id true)

Which is not the same as:

hmm = λ(id : ∀a.a → a)(id [int] 1, id [bool ] true)

Why? Because type inference for System F is undecidable!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 10 / 23



Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really ∀a.a → a?
Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions.

Our function here is equivalent to:

hmm = Λ(a : Type)λ(id : a → a)(id 1, id true)

Which is not the same as:

hmm = λ(id : ∀a.a → a)(id [int] 1, id [bool ] true)

Why? Because type inference for System F is undecidable!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 10 / 23



Does SML implement System F?

Is the polymorphism of SML equivalent to the polymorphism of System F?
Is ’a -> ’a always really ∀a.a → a?
Consider:

fun hmm (id : ’a -> ’a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not
arbitrarily inside expressions. Our function here is equivalent to:

hmm = Λ(a : Type)λ(id : a → a)(id 1, id true)

Which is not the same as:

hmm = λ(id : ∀a.a → a)(id [int] 1, id [bool ] true)

Why? Because type inference for System F is undecidable!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 10 / 23



What about exists?

If we can express “for all” as a type, can we express “there exists” as a
type?

∀t.t → t means “for any type t: if you give me a t, I’ll give you a t”

So ∃t.t → t should probably mean “there is some specific type t, and if
you give me that t, I’ll give you a t”

Question

Does this sound similar to anything in SML?

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 11 / 23



What about exists?

If we can express “for all” as a type, can we express “there exists” as a
type?

∀t.t → t means “for any type t: if you give me a t, I’ll give you a t”

So ∃t.t → t should probably mean “there is some specific type t, and if
you give me that t, I’ll give you a t”

Question

Does this sound similar to anything in SML?

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 11 / 23



What about exists?

If we can express “for all” as a type, can we express “there exists” as a
type?

∀t.t → t means “for any type t: if you give me a t, I’ll give you a t”

So ∃t.t → t should probably mean “there is some specific type t, and if
you give me that t, I’ll give you a t”

Question

Does this sound similar to anything in SML?

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 11 / 23



Existentialism == Modules!

signature S =

sig

type t

val x : t

val f : t -> t

end

is basically equivalent to:

∃t.{x : t, f : t → t}

or even more simply:

∃t.t × (t → t)

Main Idea

We use signatures to represent existential types!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 12 / 23



Existentialism == Modules!

signature S =

sig

type t

val x : t

val f : t -> t

end

is basically equivalent to:

∃t.{x : t, f : t → t}

or even more simply:

∃t.t × (t → t)

Main Idea

We use signatures to represent existential types!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 12 / 23



Existentialism == Modules!

Question

What is a value of type ∃t.τ?

Answer: A module!

structure M : S =

struct

type t = int

val x = 150

val f = fn x => x + 1

end

is a value of type ∃t.{x : t, f : t → t}

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 13 / 23



Existentialism == Modules!

Question

What is a value of type ∃t.τ?

Answer: A module!

structure M : S =

struct

type t = int

val x = 150

val f = fn x => x + 1

end

is a value of type ∃t.{x : t, f : t → t}

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 13 / 23



Existentialism == Modules!

Question

What is a value of type ∃t.τ?

Answer: A module!

structure M : S =

struct

type t = int

val x = 150

val f = fn x => x + 1

end

is a value of type ∃t.{x : t, f : t → t}

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 13 / 23



Existentialism == Modules!

To unpack a structure, use the open keyword!

open M gives me:

a type t

a value of type t

a value of type t -> t

In other words, I obtain the type t and value of type t * (t -> t) that
M implements!

Main Idea

opening a value (module) of type ∃t.τ gives us a type t and a value of
type τ

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 14 / 23



Existentialism == Modules!

To unpack a structure, use the open keyword!

open M gives me:

a type t

a value of type t

a value of type t -> t

In other words, I obtain the type t and value of type t * (t -> t) that
M implements!

Main Idea

opening a value (module) of type ∃t.τ gives us a type t and a value of
type τ

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 14 / 23



Existentialism == Modules!

To unpack a structure, use the open keyword!

open M gives me:

a type t

a value of type t

a value of type t -> t

In other words, I obtain the type t and value of type t * (t -> t) that
M implements!

Main Idea

opening a value (module) of type ∃t.τ gives us a type t and a value of
type τ

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 14 / 23



Existentialism == Modules!

To unpack a structure, use the open keyword!

open M gives me:

a type t

a value of type t

a value of type t -> t

In other words, I obtain the type t and value of type t * (t -> t) that
M implements!

Main Idea

opening a value (module) of type ∃t.τ gives us a type t and a value of
type τ

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 14 / 23



Typechecking Rules

∆, t ⊢ τ type

∆ ⊢ ∃t.τ type

∆; Γ ⊢ e : [ρ/t]τ ∆ ⊢ ρ type

∆; Γ ⊢ struct type t = ρ in e : ∃t.τ

∆; Γ ⊢ M : ∃t.τ ∆, t; Γ, x : τ ⊢ e : τ ′ ∆ ⊢ τ ′ type

∆; Γ ⊢ open M as t, x in e : τ ′

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 15 / 23



Example: Stacks!

signature STACK =

sig

type t

val empty : t

val push : int -> t -> t

val pop : t -> (int * t) option

end

structure ListStack : STACK =

struct

type t = int list

val empty = []

fun push x xs = x :: xs

fun pop [] = NONE

| pop (x :: xs) = SOME (x, xs)

end

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 16 / 23



Example: Stacks!

Stack =

∃t.{empty : t, push : int → t → t, pop : t → (int × t) option}

ListStack : Stack =

struct type t = int list in

{empty = Nil ,

push = Cons,

pop = ...}

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 17 / 23



Example: Stacks!

Stack =

∃t.{empty : t, push : int → t → t, pop : t → (int × t) option}

ListStack : Stack =

struct type t = int list in

{empty = Nil ,

push = Cons,

pop = ...}

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 17 / 23



Example: Stacks!

Stack =

∃t.{empty : t, push : int → t → t, pop : t → (int × t) option}

ListStack : Stack =

struct type t = int list in

{empty = Nil ,

push = Cons,

pop = ...}

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 17 / 23



What about functors?

signature STACK =

sig

type t

val empty : t

val push : int -> t -> t

val pop : t -> (int * t) option

end

functor MkDoubleStack (S : STACK) : STACK =

struct

type t = S.t

val empty = S.empty

fun push x s = S.push x (S.push x s)

val pop = S.pop

end

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 18 / 23



What about functors?

MkDoubleStack : Stack → Stack =

λ(S : Stack).

open S as t ′, s in

struct type t = t ′ in

{empty = s.empty ,

push = λ(x : int).(s.push x) o (s.push x)

pop = s.pop}

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 19 / 23



What about functors?

MkDoubleStack : Stack → Stack =

λ(S : Stack).

open S as t ′, s in

struct type t = t ′ in

{empty = s.empty ,

push = λ(x : int).(s.push x) o (s.push x)

pop = s.pop}

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 19 / 23



What about functors?

MkDoubleStack : Stack → Stack =

λ(S : Stack).

open S as t ′, s in

struct type t = t ′ in

{empty = s.empty ,

push = λ(x : int).(s.push x) o (s.push x)

pop = s.pop}

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 19 / 23



We don’t need no type constructors (except ∀ and →)

Question

Can we encode A× B in System F?

Answer: Yes! But How?

What can you do with a value of type A× B?

Idea

A product is defined by the fact that, given a value of type A×B, we have
access to both a value of type A and a value of type B

A× B = ∀R.(A → B → R) → R

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 20 / 23



We don’t need no type constructors (except ∀ and →)

Question

Can we encode A× B in System F?

Answer: Yes! But How?

What can you do with a value of type A× B?

Idea

A product is defined by the fact that, given a value of type A×B, we have
access to both a value of type A and a value of type B

A× B = ∀R.(A → B → R) → R

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 20 / 23



We don’t need no type constructors (except ∀ and →)

Question

Can we encode A× B in System F?

Answer: Yes! But How?

What can you do with a value of type A× B?

Idea

A product is defined by the fact that, given a value of type A×B, we have
access to both a value of type A and a value of type B

A× B = ∀R.(A → B → R) → R

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 20 / 23



We don’t need no type constructors (except ∀ and →)

Question

Can we encode A× B in System F?

Answer: Yes! But How?

What can you do with a value of type A× B?

Idea

A product is defined by the fact that, given a value of type A×B, we have
access to both a value of type A and a value of type B

A× B = ∀R.(A → B → R) → R

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 20 / 23



We don’t need no type constructors (except ∀ and →)

Question

Can we encode A× B in System F?

Answer: Yes! But How?

What can you do with a value of type A× B?

Idea

A product is defined by the fact that, given a value of type A×B, we have
access to both a value of type A and a value of type B

A× B = ∀R.(A → B → R) → R

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 20 / 23



Product Types in System F

A× B = ∀R.(A → B → R) → R

pair : ∀A B.A → B → A× B =

Λ(A B) λ(x : A) λ(y : B) Λ(R) λ(f : A → B → R) f x y

fst : ∀A B.A× B → A =

Λ(A B) λ(p : A× B) p[A] (λ(x : A) λ(y : B) x)

snd : ∀A B.A× B → B =

Λ(A B) λ(p : A× B) p[B] (λ(x : A) λ(y : B) y)

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 21 / 23



Product Types in System F

A× B = ∀R.(A → B → R) → R

pair : ∀A B.A → B → A× B =

Λ(A B) λ(x : A) λ(y : B) Λ(R) λ(f : A → B → R) f x y

fst : ∀A B.A× B → A =

Λ(A B) λ(p : A× B) p[A] (λ(x : A) λ(y : B) x)

snd : ∀A B.A× B → B =

Λ(A B) λ(p : A× B) p[B] (λ(x : A) λ(y : B) y)

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 21 / 23



Product Types in System F

A× B = ∀R.(A → B → R) → R

pair : ∀A B.A → B → A× B =

Λ(A B) λ(x : A) λ(y : B) Λ(R) λ(f : A → B → R) f x y

fst : ∀A B.A× B → A =

Λ(A B) λ(p : A× B) p[A] (λ(x : A) λ(y : B) x)

snd : ∀A B.A× B → B =

Λ(A B) λ(p : A× B) p[B] (λ(x : A) λ(y : B) y)

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 21 / 23



Product Types in System F

A× B = ∀R.(A → B → R) → R

pair : ∀A B.A → B → A× B =

Λ(A B) λ(x : A) λ(y : B) Λ(R) λ(f : A → B → R) f x y

fst : ∀A B.A× B → A =

Λ(A B) λ(p : A× B) p[A] (λ(x : A) λ(y : B) x)

snd : ∀A B.A× B → B =

Λ(A B) λ(p : A× B) p[B] (λ(x : A) λ(y : B) y)

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 21 / 23



Sum Types?

What can we do with a value of type A+ B?

Idea

A sum is defined by the fact that, given a value of type A+ B, we have
access to either a value of type A or a value of type B

A+ B = ∀R.(A → R) → (B → R) → R

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 22 / 23



Sum Types?

What can we do with a value of type A+ B?

Idea

A sum is defined by the fact that, given a value of type A+ B, we have
access to either a value of type A or a value of type B

A+ B = ∀R.(A → R) → (B → R) → R

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 22 / 23



Sum Types?

What can we do with a value of type A+ B?

Idea

A sum is defined by the fact that, given a value of type A+ B, we have
access to either a value of type A or a value of type B

A+ B = ∀R.(A → R) → (B → R) → R

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 22 / 23



Sum Types

A+ B = ∀R.(A → R) → (B → R) → R

InjectLeft : ∀A B.A → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) left x

InjectRight : ∀A B.B → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) right x

Question

What about case?

Answer: An encoded value of type A+ B is already a case!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 23 / 23



Sum Types

A+ B = ∀R.(A → R) → (B → R) → R

InjectLeft : ∀A B.A → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) left x

InjectRight : ∀A B.B → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) right x

Question

What about case?

Answer: An encoded value of type A+ B is already a case!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 23 / 23



Sum Types

A+ B = ∀R.(A → R) → (B → R) → R

InjectLeft : ∀A B.A → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) left x

InjectRight : ∀A B.B → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) right x

Question

What about case?

Answer: An encoded value of type A+ B is already a case!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 23 / 23



Sum Types

A+ B = ∀R.(A → R) → (B → R) → R

InjectLeft : ∀A B.A → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) left x

InjectRight : ∀A B.B → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) right x

Question

What about case?

Answer: An encoded value of type A+ B is already a case!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 23 / 23



Sum Types

A+ B = ∀R.(A → R) → (B → R) → R

InjectLeft : ∀A B.A → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) left x

InjectRight : ∀A B.B → A+ B =

Λ(A B) λ(x : A) Λ(R) λ(left : A → R) λ(right : B → R) right x

Question

What about case?

Answer: An encoded value of type A+ B is already a case!

Hype for Types Polymorphism: What’s the deal with ’a? October 21, 2024 23 / 23


	Polymorphism

