Polymorphism: What's the deal with 'a?

Hype for Types

October 21, 2024

Hype for Types [Polymorphism: What's the deal with 'a?](#page-72-0) October 21, 2024 1/23

÷

 \triangleright \rightarrow \exists \rightarrow

4日下 ∢母 299

 \leftarrow \Box \rightarrow

Recall lambda abstraction from the Simply Typed Lambda Calculus

$$
\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda(x : \tau) e : \tau \rightarrow \tau'}
$$

 \leftarrow \leftarrow \leftarrow \leftarrow

4 0 8

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R}$

D.

Recall lambda abstraction from the Simply Typed Lambda Calculus

$$
\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda(x : \tau) e : \tau \rightarrow \tau'}
$$

Notice how we must type annotate every lambda.

Let's write the identity function (assuming some reasonable base types):

Recall lambda abstraction from the Simply Typed Lambda Calculus

$$
\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda(x : \tau) e : \tau \rightarrow \tau'}
$$

Notice how we must type annotate every lambda.

Let's write the identity function (assuming some reasonable base types):

$$
id = \lambda(x : \texttt{Nat})x
$$

But this only works on Nats!

id true (*type error!*)

Recall lambda abstraction from the Simply Typed Lambda Calculus

$$
\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda(x : \tau) e : \tau \rightarrow \tau'}
$$

Notice how we must type annotate every lambda.

Let's write the identity function (assuming some reasonable base types):

$$
id = \lambda(x : \mathtt{Nat})x
$$

But this only works on Nats!

```
id true (*type error!*)
```
If we want it to work for Bools, we'd have to write a separate function:

$$
id2 = \lambda(x : \text{Bool})x
$$

This seems really annoying $>$: (

What does SML do?

val id = fn $(x : 'a)$ => x val = id 1 $val = id true$ $val = id$ "nice" id : 'a -> 'a

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

What does SML do?

```
val id = fn (x : 'a) => x
val = id 1
val = id trueval = id "nice"
```
id : 'a -> 'a

Question

But what is 'a? Is it a type?

 \leftarrow \Box

K 個 ▶ K 重 ▶ K 重 ▶ │ 重 │ Ю Q (2)

What does SML do?

```
val id = fn (x : 'a) => x
val = id 1
val = id trueval = id "nice"
```
id : 'a -> 'a

Question

But what is 'a? Is it a type?

If id 1 type checks then $1 : 'a??$?

K @ ▶ K 로 K K 로 K - 로 - K Q Q Q

• Intuitively, we'd like to interpret 'a \rightarrow 'a as "for all 'a, 'a \rightarrow 'a"

4 0 8

÷.

• Intuitively, we'd like to interpret 'a \rightarrow 'a as "for all 'a, 'a \rightarrow 'a" • The "for all" is *implicit*.

4 0 8

目

- Intuitively, we'd like to interpret 'a \rightarrow 'a as "for all 'a, 'a \rightarrow 'a"
- The "for all" is *implicit*.
- This is great for programming, but confusing to formalize.

 \leftarrow \Box

∢母→

医单头 人名 э

- Intuitively, we'd like to interpret 'a \rightarrow 'a as "for all 'a, 'a \rightarrow 'a"
- The "for all" is *implicit*.
- This is great for programming, but confusing to formalize. Let's make it explicit!

 \leftarrow \Box

∢母→

A BAY э

- Intuitively, we'd like to interpret 'a \rightarrow 'a as "for all 'a, 'a \rightarrow 'a"
- The "for all" is *implicit*.

This is great for programming, but confusing to formalize. Let's make it explicit!

$$
a \rightarrow 'a \Longrightarrow \forall a.a \rightarrow a
$$

∢母→

 \leftarrow \Box

A BAY э

- Intuitively, we'd like to interpret 'a \rightarrow 'a as "for all 'a, 'a \rightarrow 'a"
- The "for all" is *implicit*.

This is great for programming, but confusing to formalize. Let's make it explicit!

$$
a \rightarrow 'a \Longrightarrow \forall a.a \rightarrow a
$$

The ticks are no longer needed, as we've explicitly bound a as a type variable.

How do we construct a value of type $\forall a.a \rightarrow a$ in our new formalism?

 \Rightarrow э

4日下

∢ ⊜⊺

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x : a)x$, but once again the type variable is being bound implicitly.

 \leftarrow \Box

∢母→

 \rightarrow \equiv \rightarrow

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x : a)x$, but once again the type variable is being bound implicitly.

Let's bind it explicitly!

 $\Lambda(a : Type)\lambda(x : a)x : \forall a.a \rightarrow a$

一本 語 (を) …

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x : a)x$, but once again the type variable is being bound implicitly.

Let's bind it explicitly!

$$
\Lambda(a:Type)\lambda(x:a)x:\forall a.a \rightarrow a
$$

How do we use this?

How do we construct a value of type $\forall a \cdot a \rightarrow a$ in our new formalism? We might suggest $\lambda(x : a)x$, but once again the type variable is being bound implicitly.

Let's bind it explicitly!

$$
\Lambda(a:Type)\lambda(x:a)x:\forall a.a \rightarrow a
$$

How do we use this?

$$
(\Lambda(a:Type)\lambda(x:a)x)[Nat] \Longrightarrow \lambda(x:Nat)x
$$

The polymorphic lambda calculus we've developed is called System F. Let's write a grammar!

4 **D F** ∢ ⊜⊺ $\leftarrow \equiv$ \rightarrow

Þ

The polymorphic lambda calculus we've developed is called System F. Let's write a grammar!

$$
e ::= x
$$

\n
$$
\begin{array}{ccc}\n& \lambda(x : \tau) e \\
& \lambda(t : \text{Type}) e \\
& e_1 e_2 \\
& e_1[\tau]\n\end{array}
$$

term variable term abstraction type abstraction term application type application

 \leftarrow \Box

τ	::=	t	type variable
$ \tau_1 \rightarrow \tau_2 $	function type		
$ \forall t.\tau $	polymorphic type		

 \rightarrow \equiv \rightarrow

And some inference rules!

4日下

And some inference rules!

$$
\frac{t \in \Delta}{\Delta \vdash t \text{ type}} \qquad \frac{\Delta \vdash \tau_1 \text{ type } \Delta \vdash \tau_2 \text{ type}}{\Delta \vdash \tau_1 \rightarrow \tau_2 \text{ type}} \qquad \frac{\Delta, t \vdash \tau \text{ type}}{\Delta \vdash \forall t. \tau \text{ type}}
$$

4日下

And some inference rules!

 $t\in \Delta$ $\Delta \vdash t$ type $\Delta\vdash\tau_1$ type $\Delta\vdash\tau_2$ type $\Delta \vdash \tau_1 \rightarrow \tau_2$ type $\Delta, t \vdash \tau$ type $\overline{\Delta} \vdash \forall t . \tau$ type $x : \tau \in Γ$ $Δ;Γ ⊢ x : τ$ $Δ; Γ, x : τ ⊢ e : τ' Δ ⊢ τ *type*$ $\Delta; \Gamma \vdash \lambda(x : \tau) e : \tau \rightarrow \tau'$ Δ , t; Γ \vdash e : τ $\overline{\Delta: \Gamma \vdash \Lambda(t : \text{Type})e : \forall t.\tau}$ Δ ; Γ \vdash $e_1 : \tau \rightarrow \tau'$ Δ ; Γ \vdash $e_2 : \tau$ Δ ; Γ \vdash $e_1e_2 : \tau'$

$$
\frac{\Delta; \Gamma \vdash e : \forall t.\tau \quad \Delta \vdash \tau' \; \mathit{type}}{\Delta; \Gamma \vdash e[\tau'] : \tau[\tau'/t]}
$$

目

And some inference rules!

 $t\in \Delta$ $\Delta \vdash t$ type $\Delta\vdash\tau_1$ type $\Delta\vdash\tau_2$ type $\Delta \vdash \tau_1 \rightarrow \tau_2$ type $\Delta,t \vdash \tau$ type $\Delta \vdash \forall t . \tau$ type $x : \tau \in Γ$ $Δ;Γ ⊢ x : τ$ $Δ; Γ, x : τ ⊢ e : τ' Δ ⊢ τ *type*$ $\Delta; \Gamma \vdash \lambda(x : \tau) e : \tau \rightarrow \tau'$ Δ , t; Γ \vdash e : τ $\overline{\Delta: \Gamma \vdash \Lambda(t : \text{Type})e : \forall t.\tau}$ Δ ; Γ \vdash $e_1 : \tau \rightarrow \tau'$ Δ ; Γ \vdash $e_2 : \tau$ Δ ; Γ \vdash $e_1e_2 : \tau'$ Δ ; Γ \vdash e : \forall t. τ Δ \vdash τ' type $Δ; Γ ⊢ ε[τ'] : τ[τ'/t]$

Question

Do we need anything else? What about product types? Sum types?

G.

←ロト イ母ト イヨト イヨトー

And some inference rules!

 $t\in \Delta$ $\Delta \vdash t$ type $\Delta\vdash\tau_1$ type $\Delta\vdash\tau_2$ type $\Delta \vdash \tau_1 \rightarrow \tau_2$ type $\Delta,t \vdash \tau$ type $\Delta \vdash \forall t . \tau$ type $x : \tau \in Γ$ $Δ;Γ ⊢ x : τ$ $Δ; Γ, x : τ ⊢ e : τ' Δ ⊢ τ *type*$ $\Delta; \Gamma \vdash \lambda(x : \tau) e : \tau \rightarrow \tau'$ Δ , t; Γ \vdash e : τ $\overline{\Delta: \Gamma \vdash \Lambda(t : \text{Type})e : \forall t.\tau}$ Δ ; Γ \vdash $e_1 : \tau \rightarrow \tau'$ Δ ; Γ \vdash $e_2 : \tau$ Δ ; Γ \vdash $e_1e_2 : \tau'$ Δ ; Γ \vdash e : \forall t. τ Δ \vdash τ' type $Δ; Γ ⊢ ε[τ'] : τ[τ'/t]$

Question

Do we need anything else? What about product types? Sum types?

We'll get back to that later...

Hype for Types **Polymorphism:** What's the deal with 'a? **Polyce 21, 2024** 8/23

swap : $\forall a \ b \ c.(a \rightarrow b \rightarrow c) \rightarrow (b \rightarrow a \rightarrow c) =$

 299

D.

$$
swap : \forall a \ b \ c.(a \rightarrow b \rightarrow c) \rightarrow (b \rightarrow a \rightarrow c) =
$$

$$
\Lambda(a \ b \ c : \text{Type})\lambda(f : a \rightarrow b \rightarrow c)\lambda(x : b)\lambda(y : a)f \ y \ x
$$

$$
swap : \forall a \ b \ c.(a \rightarrow b \rightarrow c) \rightarrow (b \rightarrow a \rightarrow c) =
$$

$$
\Lambda(a \ b \ c : \text{Type})\lambda(f : a \rightarrow b \rightarrow c)\lambda(x : b)\lambda(y : a)f \ y \ x
$$

$$
\text{compose} : \forall a \ b \ c.(a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow (a \rightarrow c) =
$$

$$
swap : \forall a \ b \ c.(a \rightarrow b \rightarrow c) \rightarrow (b \rightarrow a \rightarrow c) =
$$

$$
\Lambda(a \ b \ c : \text{Type})\lambda(f : a \rightarrow b \rightarrow c)\lambda(x : b)\lambda(y : a)f \ y \ x
$$

$$
\text{compose} : \forall a \ b \ c.(a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow (a \rightarrow c) =
$$

$$
\Lambda(a \ b \ c : \text{Type})\lambda(f : a \rightarrow b)\lambda(g : b \rightarrow c)\lambda(x : a)g(f \ x)
$$

Is the polymorphism of SML equivalent to the polymorphism of System F? Is 'a \rightarrow 'a always really $\forall a.a \rightarrow a?$

 \leftarrow \Box

 \triangleright \rightarrow \exists \rightarrow

э

Is the polymorphism of SML equivalent to the polymorphism of System F? Is 'a \rightarrow 'a always really $\forall a.a \rightarrow a?$ Consider:

fun hmm (id : 'a \rightarrow 'a) = (id 1, id true)

 \triangleright and \exists \triangleright and \triangleright

G.

Is the polymorphism of SML equivalent to the polymorphism of System F? Is 'a \rightarrow 'a always really $\forall a.a \rightarrow a?$ Consider:

fun hmm (id : 'a \rightarrow 'a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not arbitrarily inside expressions.

Is the polymorphism of SML equivalent to the polymorphism of System F? Is 'a \rightarrow 'a always really $\forall a.a \rightarrow a?$ Consider:

fun hmm (id : 'a \rightarrow 'a) = (id 1, id true)

Type error! In SML, big lambdas can only be present at declarations, not arbitrarily inside expressions. Our function here is equivalent to:

$$
hmm = \Lambda(a: Type)\lambda(id : a \rightarrow a)(id 1, id true)
$$

Which is *not* the same as:

$$
hmm = \lambda(id : \forall a.a \rightarrow a)(id[int] 1, id[bool] true)
$$

Why? Because type inference for System F is undecidable!

What about exists?

If we can express "for all" as a type, can we express "there exists" as a type?

 $\rightarrow \equiv$

∢母

 \leftarrow \Box

G.
What about exists?

If we can express "for all" as a type, can we express "there exists" as a type?

 $\forall t \in t \rightarrow t$ means "for any type t: if you give me a t, I'll give you a t" So $\exists t \cdot t \rightarrow t$ should probably mean "there is some *specific* type t, and if you give me that t, I'll give you a t"

What about exists?

If we can express "for all" as a type, can we express "there exists" as a type?

 $\forall t \in t \rightarrow t$ means "for any type t: if you give me a t, I'll give you a t"

So $\exists t \cdot t \rightarrow t$ should probably mean "there is some specific type t, and if you give me that t, I'll give you a t"

Question Does this sound similar to anything in SML?

```
signature S =
  sig
    type t
    val x : t
    val f : t \rightarrow tend
```
is basically equivalent to:

$$
\exists t.\{x:t,f:t\rightarrow t\}
$$

or even more simply:

 $\exists t. t \times (t \rightarrow t)$

∢母→

 \leftarrow \Box

KABK B

```
signature S =
  sig
    type t
    val x : t
    val f : t \rightarrow tend
```
is basically equivalent to:

$$
\exists t.\{x:t,f:t\rightarrow t\}
$$

or even more simply:

$$
\exists t. t \times (t \to t)
$$

Question

What is a value of type $\exists t.\tau$?

4 0 3 ∢ ⊜⊺ \rightarrow $\exists x \in A \exists y$

÷.

Question

What is a value of type $\exists t.\tau$?

Answer: A module!

 \rightarrow

 \leftarrow \Box

 $A \equiv \mathbf{1} \times A \equiv \mathbf{1}$

÷.

Question

```
What is a value of type \exists t.\tau?
```
Answer: A module!

```
structure M : S =
  struct
    type t = intval x = 150val f = fn \times => x + 1end
```
is a value of type $\exists t.\{x : t, f : t \rightarrow t\}$

EXISTE

To unpack a structure, use the open keyword!

∢母→

ミドイミドー

4日下

÷.

To unpack a structure, use the open keyword!

open M gives me:

- a type t
- a value of type t
- a value of type $t \rightarrow t$

 \triangleright and \exists \triangleright and \triangleright

G.

4 同 ト

€⊡

To unpack a structure, use the open keyword!

open M gives me:

- a type t
- a value of type t
- a value of type $t \rightarrow t$

In other words, I obtain the type t and value of type $t * (t -> t)$ that M implements!

∢母→

Existence

To unpack a structure, use the open keyword!

open M gives me:

- a type t
- a value of type t
- a value of type $t \rightarrow t$

In other words, I obtain the type t and value of type $t * (t \rightarrow t)$ that M implements!

Main Idea opening a value (module) of type $\exists t.\tau$ gives us a type t and a value of type τ

- イヨ メーヨー

Typechecking Rules

$$
\frac{\Delta, t \vdash \tau \text{ type}}{\Delta \vdash \exists t. \tau \text{ type}} \qquad \frac{\Delta; \Gamma \vdash e : [\rho/t] \tau \quad \Delta \vdash \rho \text{ type}}{\Delta; \Gamma \vdash \text{struct type } t = \rho \text{ in } e : \exists t. \tau}
$$
\n
$$
\frac{\Delta; \Gamma \vdash M : \exists t. \tau \quad \Delta, t; \Gamma, x : \tau \vdash e : \tau' \quad \Delta \vdash \tau' \text{ type}}{\Delta; \Gamma \vdash \text{ open } M \text{ as } t, x \text{ in } e : \tau'}
$$

イロト イ部 トイモト イモト

重

```
signature STACK =
  sig
    type t
    val empty : t
    val push : int \rightarrow t \rightarrow t
    val pop : t \rightarrow (int * t) option
  end
structure ListStack : STACK =
  struct
    type t = int list
    val empty = []
    fun push x xs = x :: xsfun pop [] = NONE\vert pop (x :: xs) = SOLME (x, xs)end
```
 $Stack =$

イロト イ部 トイヨ トイヨト

重

$Stack =$

 $\exists t.$ {empty : t, push : int \rightarrow t \rightarrow t, pop : t \rightarrow (int \times t) option}

 $ListStack : Stack =$

∢母→

4 D F

GARAGE

G.

 $Stack =$

 $\exists t.$ {empty : t, push : int \rightarrow t \rightarrow t, pop : t \rightarrow (int \times t) option}

 $ListStack : Stack =$ struct type $t = int$ list in $\{empty = Nil,$ $push = Cons,$ $pop = ...$ }

Hype for Types **Polymorphism:** What's the deal with 'a? **Polyce 21, 2024** 17/23

 \leftarrow \Box

イ母 ト イヨ ト イヨ トー

G.

```
signature STACK =
  sig
    type t
    val empty : t
    val push : int \rightarrow t \rightarrow t
    val pop : t \rightarrow (int * t) option
  end
functor MkDoubleStack (S : STACK) : STACK =
  struct
    type t = S.tval empty = S . empty
    fun push x s = S. push x (S. push x s)
    val pop = S.popend
```
K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

 $MkDoubleStack: Stack \rightarrow Stack =$

∢母→

ミドマミド

4日下

÷.

 $MkDoubleStack: Stack \rightarrow Stack =$ $\lambda(S : Stack).$ open S as t', s in

4 0 8 ∢ ⊜⊺ \triangleright \rightarrow \exists \rightarrow

G.

 $MkDoubleStack: Stack \rightarrow Stack =$ $\lambda(S : Stack).$ open S as t', s in struct type $t = t'$ in $\{empty = s. \emptyset\}$ push = $\lambda(x : int)$.(s.push x) o (s.push x) $pop = s.pop$

K個→ K 目→ K 目→ → 目→ の Q Q

Question

Can we encode $A \times B$ in System F?

IN

 \leftarrow \Box

 \rightarrow \equiv \rightarrow

э

Question

Can we encode $A \times B$ in System F?

Answer: Yes! But How?

 \leftarrow \Box

医尿囊的

G.

Question

Can we encode $A \times B$ in System F?

Answer: Yes! But How?

What can you do with a value of type $A \times B$?

Question

Can we encode $A \times B$ in System F?

Answer: Yes! But How?

What can you do with a value of type $A \times B$?

Idea

A product is defined by the fact that, given a value of type $A \times B$, we have access to both a value of type A and a value of type B

Question

Can we encode $A \times B$ in System F?

Answer: Yes! But How?

What can you do with a value of type $A \times B$?

Idea

A product is defined by the fact that, given a value of type $A \times B$, we have access to both a value of type A and a value of type B

$$
A \times B = \forall R.(A \rightarrow B \rightarrow R) \rightarrow R
$$

$$
A \times B = \forall R.(A \rightarrow B \rightarrow R) \rightarrow R
$$

重

 $A \times B = \forall R.(A \rightarrow B \rightarrow R) \rightarrow R$ pair : $\forall A \ B.A \rightarrow B \rightarrow A \times B =$ $\Lambda(A \ B) \ \lambda(x:A) \ \lambda(y:B) \ \Lambda(R) \ \lambda(f:A \rightarrow B \rightarrow R) \ f \ x \ y$

4 0 F

K 何 ▶ 【 ヨ ▶ 【 ヨ ▶

G.

 QQ

 $A \times B = \forall R.(A \rightarrow B \rightarrow R) \rightarrow R$ pair : $\forall A \ B.A \rightarrow B \rightarrow A \times B =$ $\Lambda(A \ B) \ \lambda(x:A) \ \lambda(y:B) \ \Lambda(R) \ \lambda(f:A \rightarrow B \rightarrow R) \ f \ x \ y$ fst · $\forall A \; B \; A \times B \rightarrow A =$ $\Lambda(A \ B) \ \lambda(p : A \times B) \ p[A] \ (\lambda(x : A) \ \lambda(y : B) \ x)$

G.

 $A \times B = \forall R.(A \rightarrow B \rightarrow R) \rightarrow R$ pair : $\forall A \ B.A \rightarrow B \rightarrow A \times B =$ $\Lambda(A \ B) \ \lambda(x:A) \ \lambda(y:B) \ \Lambda(R) \ \lambda(f:A \rightarrow B \rightarrow R) \ f \ x \ y$ fst · $\forall A \; B \; A \times B \rightarrow A =$ $\Lambda(A \ B) \ \lambda(p : A \times B) \ p[A] \ (\lambda(x : A) \ \lambda(y : B) \ x)$ snd : $\forall A \ B \ A \times B \rightarrow B =$ $\Lambda(A \ B) \ \lambda(p : A \times B) \ p[B] \ (\lambda(x : A) \ \lambda(y : B) \ y)$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA} \rightarrow \overline{BA}

What can we do with a value of type $A + B$?

4 0 8

重

What can we do with a value of type $A + B$?

Idea

A sum is defined by the fact that, given a value of type $A + B$, we have access to either a value of type A or a value of type B

What can we do with a value of type $A + B$?

Idea

A sum is defined by the fact that, given a value of type $A + B$, we have access to either a value of type A or a value of type B

$$
A + B = \forall R.(A \rightarrow R) \rightarrow (B \rightarrow R) \rightarrow R
$$

$$
A + B = \forall R.(A \rightarrow R) \rightarrow (B \rightarrow R) \rightarrow R
$$

 2990

 $A + B = \forall R.(A \rightarrow R) \rightarrow (B \rightarrow R) \rightarrow R$ InjectLeft : $\forall A \ B.A \rightarrow A+B=$ $\Lambda(A \ B) \ \lambda(x:A) \ \Lambda(R) \ \lambda(\text{left} : A \to R) \ \lambda(\text{right} : B \to R) \ \text{left} \ x$

 $A + B = \forall R.(A \rightarrow R) \rightarrow (B \rightarrow R) \rightarrow R$ InjectLeft : $\forall A \ B.A \rightarrow A+B=$ $\Lambda(A \ B) \ \lambda(x:A) \ \Lambda(R) \ \lambda(\text{left} : A \to R) \ \lambda(\text{right} : B \to R) \ \text{left} \ x$ InjectRight : $\forall A \ B.B \rightarrow A+B=$ $\Lambda(A \ B) \ \lambda(x:A) \ \Lambda(R) \ \lambda(\text{left} : A \to R) \ \lambda(\text{right} : B \to R) \ \text{right} \ x$

KILIKA EIKIEN EI KORA

 $A + B = \forall R.(A \rightarrow R) \rightarrow (B \rightarrow R) \rightarrow R$ InjectLeft : $\forall A \ B.A \rightarrow A+B=$ $\Lambda(A \ B) \ \lambda(x:A) \ \Lambda(R) \ \lambda(\text{left} : A \to R) \ \lambda(\text{right} : B \to R) \ \text{left} \ x$ InjectRight : $\forall A \ B.B \rightarrow A + B =$ $\Lambda(A \ B) \ \lambda(x:A) \ \Lambda(R) \ \lambda(\text{left} : A \to R) \ \lambda(\text{right} : B \to R) \ \text{right} \ x$

Question

What about case?
Sum Types

 $A + B = \forall R.(A \rightarrow R) \rightarrow (B \rightarrow R) \rightarrow R$ InjectLeft : $\forall A \ B.A \rightarrow A+B=$ $\Lambda(A \ B) \ \lambda(x:A) \ \Lambda(R) \ \lambda(\text{left} : A \to R) \ \lambda(\text{right} : B \to R) \ \text{left} \ x$ InjectRight : $\forall A \ B.B \rightarrow A+B=$ $\Lambda(A \ B) \ \lambda(x:A) \ \Lambda(R) \ \lambda(\text{left} : A \to R) \ \lambda(\text{right} : B \to R) \ \text{right} \ x$

Question

What about case?

Answer: An encoded value of type $A + B$ is already a case!

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA} \rightarrow \overline{BA}