
Call-By-Push-Value

Hype for Types

October 28, 2024

Hype for Types Call-By-Push-Value October 28, 2024 1 / 23

What We’ll Talk About

The effect of adding effects to a language

The call-by-push-value (CBPV) paradigm

What it means for a type to be “positive” or “negative”

How CBPV makes a type-level distinction between values and
effectful computations

How CBPV can be used as an intermediate representation (IR) in a
compiler

Hype for Types Call-By-Push-Value October 28, 2024 2 / 23

Effects

Hype for Types Call-By-Push-Value October 28, 2024 3 / 23

It’s Super Effective!
So far, we haven’t introduced any “effectful” computations into the
languages we’ve explored, so let’s do so now:

Γ ⊢ e : τ (s ∈ Σ∗)

Γ ⊢ print s; e : τ

In STLC, we would have no way to tell whether an expression is effectful
or not just by looking at its type:

e1 = Left true

e2 = Left (print "meow"; true)

e3 = print "meow";Left true

All of these expressions have type bool+ τ , but some are effectful and
some are not. This may not be a big deal with benign effects, but what if
an expression’s effect could change the course of evaluation?
What if we could bring the distinction between values and effectful
computations to the type level?

Hype for Types Call-By-Push-Value October 28, 2024 4 / 23

It’s Super Effective!
So far, we haven’t introduced any “effectful” computations into the
languages we’ve explored, so let’s do so now:

Γ ⊢ e : τ (s ∈ Σ∗)

Γ ⊢ print s; e : τ

In STLC, we would have no way to tell whether an expression is effectful
or not just by looking at its type:

e1 = Left true

e2 = Left (print "meow"; true)

e3 = print "meow";Left true

All of these expressions have type bool+ τ , but some are effectful and
some are not. This may not be a big deal with benign effects, but what if
an expression’s effect could change the course of evaluation?
What if we could bring the distinction between values and effectful
computations to the type level?

Hype for Types Call-By-Push-Value October 28, 2024 4 / 23

It’s Super Effective!
So far, we haven’t introduced any “effectful” computations into the
languages we’ve explored, so let’s do so now:

Γ ⊢ e : τ (s ∈ Σ∗)

Γ ⊢ print s; e : τ

In STLC, we would have no way to tell whether an expression is effectful
or not just by looking at its type:

e1 = Left true

e2 = Left (print "meow"; true)

e3 = print "meow";Left true

All of these expressions have type bool+ τ , but some are effectful and
some are not.

This may not be a big deal with benign effects, but what if
an expression’s effect could change the course of evaluation?
What if we could bring the distinction between values and effectful
computations to the type level?

Hype for Types Call-By-Push-Value October 28, 2024 4 / 23

It’s Super Effective!
So far, we haven’t introduced any “effectful” computations into the
languages we’ve explored, so let’s do so now:

Γ ⊢ e : τ (s ∈ Σ∗)

Γ ⊢ print s; e : τ

In STLC, we would have no way to tell whether an expression is effectful
or not just by looking at its type:

e1 = Left true

e2 = Left (print "meow"; true)

e3 = print "meow";Left true

All of these expressions have type bool+ τ , but some are effectful and
some are not. This may not be a big deal with benign effects, but what if
an expression’s effect could change the course of evaluation?

What if we could bring the distinction between values and effectful
computations to the type level?

Hype for Types Call-By-Push-Value October 28, 2024 4 / 23

It’s Super Effective!
So far, we haven’t introduced any “effectful” computations into the
languages we’ve explored, so let’s do so now:

Γ ⊢ e : τ (s ∈ Σ∗)

Γ ⊢ print s; e : τ

In STLC, we would have no way to tell whether an expression is effectful
or not just by looking at its type:

e1 = Left true

e2 = Left (print "meow"; true)

e3 = print "meow";Left true

All of these expressions have type bool+ τ , but some are effectful and
some are not. This may not be a big deal with benign effects, but what if
an expression’s effect could change the course of evaluation?
What if we could bring the distinction between values and effectful
computations to the type level?

Hype for Types Call-By-Push-Value October 28, 2024 4 / 23

Call-By-Push-Value

Hype for Types Call-By-Push-Value October 28, 2024 5 / 23

Defining CBPV
In call-by-push-value (CBPV), we divide terms into values and
computations based on the polarity of their type.

We have two distinct
categories of types:

Positive A ::= A1 ⊗ A2 | A1 + A2 | U(X)
Negative X ::= X1 × X2 | A → X | F(A)

and two distinct categories of terms:

Values V ::= x | V1 ⊗ V2 | Left V | Right V | susp(C)
Computations C ::= ⟨C1,C2⟩ | fst(C) | snd(C) | λx : A. C |

ap(C ;V) | split V of x1, x2 ⇒ C |
case V of {x1 ⇒ C1 | x2 ⇒ C2} | force(V) |
ret(V) | bind x = C1 in C2 | print s;C

As a result, we have two different type-checking judgment forms:

Γ ⊢ V : A Γ ⊢ C : X

Hype for Types Call-By-Push-Value October 28, 2024 6 / 23

Defining CBPV
In call-by-push-value (CBPV), we divide terms into values and
computations based on the polarity of their type. We have two distinct
categories of types:

Positive A ::= A1 ⊗ A2 | A1 + A2 | U(X)
Negative X ::= X1 × X2 | A → X | F(A)

and two distinct categories of terms:

Values V ::= x | V1 ⊗ V2 | Left V | Right V | susp(C)
Computations C ::= ⟨C1,C2⟩ | fst(C) | snd(C) | λx : A. C |

ap(C ;V) | split V of x1, x2 ⇒ C |
case V of {x1 ⇒ C1 | x2 ⇒ C2} | force(V) |
ret(V) | bind x = C1 in C2 | print s;C

As a result, we have two different type-checking judgment forms:

Γ ⊢ V : A Γ ⊢ C : X

Hype for Types Call-By-Push-Value October 28, 2024 6 / 23

Defining CBPV
In call-by-push-value (CBPV), we divide terms into values and
computations based on the polarity of their type. We have two distinct
categories of types:

Positive A ::= A1 ⊗ A2 | A1 + A2 | U(X)
Negative X ::= X1 × X2 | A → X | F(A)

and two distinct categories of terms:

Values V ::= x | V1 ⊗ V2 | Left V | Right V | susp(C)
Computations C ::= ⟨C1,C2⟩ | fst(C) | snd(C) | λx : A. C |

ap(C ;V) | split V of x1, x2 ⇒ C |
case V of {x1 ⇒ C1 | x2 ⇒ C2} | force(V) |
ret(V) | bind x = C1 in C2 | print s;C

As a result, we have two different type-checking judgment forms:

Γ ⊢ V : A Γ ⊢ C : X

Hype for Types Call-By-Push-Value October 28, 2024 6 / 23

Defining CBPV
In call-by-push-value (CBPV), we divide terms into values and
computations based on the polarity of their type. We have two distinct
categories of types:

Positive A ::= A1 ⊗ A2 | A1 + A2 | U(X)
Negative X ::= X1 × X2 | A → X | F(A)

and two distinct categories of terms:

Values V ::= x | V1 ⊗ V2 | Left V | Right V | susp(C)
Computations C ::= ⟨C1,C2⟩ | fst(C) | snd(C) | λx : A. C |

ap(C ;V) | split V of x1, x2 ⇒ C |
case V of {x1 ⇒ C1 | x2 ⇒ C2} | force(V) |
ret(V) | bind x = C1 in C2 | print s;C

As a result, we have two different type-checking judgment forms:

Γ ⊢ V : A Γ ⊢ C : X

Hype for Types Call-By-Push-Value October 28, 2024 6 / 23

Defining CBPV

The governing slogan of the CBPV paradigm is:

Slogan

Values are, computations do

But how did we get to this definition? What does it mean to be “positive”
or “negative”? What are all of these new constructs? Let’s start with
polarity...

Hype for Types Call-By-Push-Value October 28, 2024 7 / 23

Defining CBPV

The governing slogan of the CBPV paradigm is:

Slogan

Values are, computations do

But how did we get to this definition? What does it mean to be “positive”
or “negative”? What are all of these new constructs? Let’s start with
polarity...

Hype for Types Call-By-Push-Value October 28, 2024 7 / 23

Defining CBPV

The governing slogan of the CBPV paradigm is:

Slogan

Values are, computations do

But how did we get to this definition? What does it mean to be “positive”
or “negative”? What are all of these new constructs?

Let’s start with
polarity...

Hype for Types Call-By-Push-Value October 28, 2024 7 / 23

Defining CBPV

The governing slogan of the CBPV paradigm is:

Slogan

Values are, computations do

But how did we get to this definition? What does it mean to be “positive”
or “negative”? What are all of these new constructs? Let’s start with
polarity...

Hype for Types Call-By-Push-Value October 28, 2024 7 / 23

Polarity

Hype for Types Call-By-Push-Value October 28, 2024 8 / 23

Why So Positive?

We can categorize a type as either positive or negative

Definition

A positive type is one whose elements are defined by their introduction
(i.e. how they are created)

For example,

The type τ1 + τ2 is positive because it is defined by the values we
inject into it (Left e1 and Right e2)

Idea

For values of positive types, we derive meaning from the “structure” of the
introductory forms, and the eliminations treat the value as a “black box”

Hype for Types Call-By-Push-Value October 28, 2024 9 / 23

Why So Positive?

We can categorize a type as either positive or negative

Definition

A positive type is one whose elements are defined by their introduction
(i.e. how they are created)

For example,

The type τ1 + τ2 is positive because it is defined by the values we
inject into it (Left e1 and Right e2)

Idea

For values of positive types, we derive meaning from the “structure” of the
introductory forms, and the eliminations treat the value as a “black box”

Hype for Types Call-By-Push-Value October 28, 2024 9 / 23

Why So Positive?

We can categorize a type as either positive or negative

Definition

A positive type is one whose elements are defined by their introduction
(i.e. how they are created)

For example,

The type τ1 + τ2 is positive because it is defined by the values we
inject into it (Left e1 and Right e2)

Idea

For values of positive types, we derive meaning from the “structure” of the
introductory forms, and the eliminations treat the value as a “black box”

Hype for Types Call-By-Push-Value October 28, 2024 9 / 23

Why So Negative?

We can categorize a type as either positive or negative

Definition

A negative type is one whose elements are defined by their elimination
(i.e. how they are used)

For example,

The type τ1 × τ2 is negative because it is defined by the fact that we
can project out of it (fst(e) and snd(e))

The type τ1 → τ2 is negative because it is defined by the fact that we
can apply it to other expressions

Idea

For values of negative types, we can treat the value itself as a “black box”
and derive meaning about the value through its elimination

Hype for Types Call-By-Push-Value October 28, 2024 10 / 23

Why So Negative?

We can categorize a type as either positive or negative

Definition

A negative type is one whose elements are defined by their elimination
(i.e. how they are used)

For example,

The type τ1 × τ2 is negative because it is defined by the fact that we
can project out of it (fst(e) and snd(e))

The type τ1 → τ2 is negative because it is defined by the fact that we
can apply it to other expressions

Idea

For values of negative types, we can treat the value itself as a “black box”
and derive meaning about the value through its elimination

Hype for Types Call-By-Push-Value October 28, 2024 10 / 23

Why So Negative?

We can categorize a type as either positive or negative

Definition

A negative type is one whose elements are defined by their elimination
(i.e. how they are used)

For example,

The type τ1 × τ2 is negative because it is defined by the fact that we
can project out of it (fst(e) and snd(e))

The type τ1 → τ2 is negative because it is defined by the fact that we
can apply it to other expressions

Idea

For values of negative types, we can treat the value itself as a “black box”
and derive meaning about the value through its elimination

Hype for Types Call-By-Push-Value October 28, 2024 10 / 23

Why So Negative?

We can categorize a type as either positive or negative

Definition

A negative type is one whose elements are defined by their elimination
(i.e. how they are used)

For example,

The type τ1 × τ2 is negative because it is defined by the fact that we
can project out of it (fst(e) and snd(e))

The type τ1 → τ2 is negative because it is defined by the fact that we
can apply it to other expressions

Idea

For values of negative types, we can treat the value itself as a “black box”
and derive meaning about the value through its elimination

Hype for Types Call-By-Push-Value October 28, 2024 10 / 23

Polarizing Products

The distinction between positive and negative types gives rise to two
different definitions of the product type:

Negative product:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2

Γ ⊢ e : τ1 × τ2
Γ ⊢ fst(e) : τ1

Γ ⊢ e : τ1 × τ2
Γ ⊢ snd(e) : τ2

Positive product:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
Γ ⊢ e1 ⊗ e2 : τ1 ⊗ τ2

Γ ⊢ e : τ1 ⊗ τ2 Γ, x1 : τ1, x2 : τ2 ⊢ e ′ : τ

Γ ⊢ split e of x1, x2 ⇒ e ′ : τ

Hype for Types Call-By-Push-Value October 28, 2024 11 / 23

Polarizing Products

The distinction between positive and negative types gives rise to two
different definitions of the product type:

Negative product:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2

Γ ⊢ e : τ1 × τ2
Γ ⊢ fst(e) : τ1

Γ ⊢ e : τ1 × τ2
Γ ⊢ snd(e) : τ2

Positive product:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
Γ ⊢ e1 ⊗ e2 : τ1 ⊗ τ2

Γ ⊢ e : τ1 ⊗ τ2 Γ, x1 : τ1, x2 : τ2 ⊢ e ′ : τ

Γ ⊢ split e of x1, x2 ⇒ e ′ : τ

Hype for Types Call-By-Push-Value October 28, 2024 11 / 23

Polarizing Products

The distinction between positive and negative types gives rise to two
different definitions of the product type:

Negative product:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2

Γ ⊢ e : τ1 × τ2
Γ ⊢ fst(e) : τ1

Γ ⊢ e : τ1 × τ2
Γ ⊢ snd(e) : τ2

Positive product:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
Γ ⊢ e1 ⊗ e2 : τ1 ⊗ τ2

Γ ⊢ e : τ1 ⊗ τ2 Γ, x1 : τ1, x2 : τ2 ⊢ e ′ : τ

Γ ⊢ split e of x1, x2 ⇒ e ′ : τ

Hype for Types Call-By-Push-Value October 28, 2024 11 / 23

What’s The Connection?

The categorization of types based on their polarity lends itself to a
distinction between values and computations:

We take positive types to be the types of values, since their
characterization is independent of what computations you do with
them

▶ The introduction forms create values, and the eliminations are
computations on values

We take negative types to be the types of computations, since their
characterization is dependent on what computations you do with
them

▶ The introduction forms create computations, and the eliminations
produce further computations

Hype for Types Call-By-Push-Value October 28, 2024 12 / 23

What’s The Connection?

The categorization of types based on their polarity lends itself to a
distinction between values and computations:

We take positive types to be the types of values, since their
characterization is independent of what computations you do with
them

▶ The introduction forms create values, and the eliminations are
computations on values

We take negative types to be the types of computations, since their
characterization is dependent on what computations you do with
them

▶ The introduction forms create computations, and the eliminations
produce further computations

Hype for Types Call-By-Push-Value October 28, 2024 12 / 23

What’s The Connection?

The categorization of types based on their polarity lends itself to a
distinction between values and computations:

We take positive types to be the types of values, since their
characterization is independent of what computations you do with
them

▶ The introduction forms create values, and the eliminations are
computations on values

We take negative types to be the types of computations, since their
characterization is dependent on what computations you do with
them

▶ The introduction forms create computations, and the eliminations
produce further computations

Hype for Types Call-By-Push-Value October 28, 2024 12 / 23

What’s The Connection?

The categorization of types based on their polarity lends itself to a
distinction between values and computations:

We take positive types to be the types of values, since their
characterization is independent of what computations you do with
them

▶ The introduction forms create values, and the eliminations are
computations on values

We take negative types to be the types of computations, since their
characterization is dependent on what computations you do with
them

▶ The introduction forms create computations, and the eliminations
produce further computations

Hype for Types Call-By-Push-Value October 28, 2024 12 / 23

What’s The Connection?

The categorization of types based on their polarity lends itself to a
distinction between values and computations:

We take positive types to be the types of values, since their
characterization is independent of what computations you do with
them

▶ The introduction forms create values, and the eliminations are
computations on values

We take negative types to be the types of computations, since their
characterization is dependent on what computations you do with
them

▶ The introduction forms create computations, and the eliminations
produce further computations

Hype for Types Call-By-Push-Value October 28, 2024 12 / 23

Getting Closer...

We now have an explanation for how we split up our STLC types into our
two categories:

Positive A ::= A1 ⊗ A2 | A1 + A2 | U(X)
Negative X ::= X1 × X2 | A → X | F(A)

Values V ::= x | V1 ⊗ V2 | Left V | Right V | susp(C)
Computations C ::= ⟨C1,C2⟩ | fst(C) | snd(C) | λx : A. C |

ap(C ;V) | split V of x1, x2 ⇒ C |
case V of {x1 ⇒ C1 | x2 ⇒ C2} | force(V) |
ret(V) | bind x = C1 in C2 | print s;C

Question

What are these F and U types?

Hype for Types Call-By-Push-Value October 28, 2024 13 / 23

Getting Closer...

We now have an explanation for how we split up our STLC types into our
two categories:

Positive A ::= A1 ⊗ A2 | A1 + A2 | U(X)
Negative X ::= X1 × X2 | A → X | F(A)

Values V ::= x | V1 ⊗ V2 | Left V | Right V | susp(C)
Computations C ::= ⟨C1,C2⟩ | fst(C) | snd(C) | λx : A. C |

ap(C ;V) | split V of x1, x2 ⇒ C |
case V of {x1 ⇒ C1 | x2 ⇒ C2} | force(V) |
ret(V) | bind x = C1 in C2 | print s;C

Question

What are these F and U types?

Hype for Types Call-By-Push-Value October 28, 2024 13 / 23

What the F are U Talking About?

The type U(X) represents suspended computations:

Γ ⊢ C : X
Γ ⊢ susp(C) : U(X)

Γ ⊢ V : U(X)

Γ ⊢ force(V) : X

The type F(A) represents computations which return values of type A:

Γ ⊢ V : A
Γ ⊢ ret(V) : F(A)

Γ ⊢ C1 : F(A) Γ, x : A ⊢ C2 : X

Γ ⊢ bind x = C1 in C2 : X

Idea

The U and F type constructors give us a way to express computations as
values (and vice versa)

Hype for Types Call-By-Push-Value October 28, 2024 14 / 23

What the F are U Talking About?

The type U(X) represents suspended computations:

Γ ⊢ C : X
Γ ⊢ susp(C) : U(X)

Γ ⊢ V : U(X)

Γ ⊢ force(V) : X

The type F(A) represents computations which return values of type A:

Γ ⊢ V : A
Γ ⊢ ret(V) : F(A)

Γ ⊢ C1 : F(A) Γ, x : A ⊢ C2 : X

Γ ⊢ bind x = C1 in C2 : X

Idea

The U and F type constructors give us a way to express computations as
values (and vice versa)

Hype for Types Call-By-Push-Value October 28, 2024 14 / 23

What the F are U Talking About?

The type U(X) represents suspended computations:

Γ ⊢ C : X
Γ ⊢ susp(C) : U(X)

Γ ⊢ V : U(X)

Γ ⊢ force(V) : X

The type F(A) represents computations which return values of type A:

Γ ⊢ V : A
Γ ⊢ ret(V) : F(A)

Γ ⊢ C1 : F(A) Γ, x : A ⊢ C2 : X

Γ ⊢ bind x = C1 in C2 : X

Idea

The U and F type constructors give us a way to express computations as
values (and vice versa)

Hype for Types Call-By-Push-Value October 28, 2024 14 / 23

What the F are U Talking About?

The type U(X) represents suspended computations:

Γ ⊢ C : X
Γ ⊢ susp(C) : U(X)

Γ ⊢ V : U(X)

Γ ⊢ force(V) : X

The type F(A) represents computations which return values of type A:

Γ ⊢ V : A
Γ ⊢ ret(V) : F(A)

Γ ⊢ C1 : F(A) Γ, x : A ⊢ C2 : X

Γ ⊢ bind x = C1 in C2 : X

Idea

The U and F type constructors give us a way to express computations as
values (and vice versa)

Hype for Types Call-By-Push-Value October 28, 2024 14 / 23

What the F are U Talking About?

The type U(X) represents suspended computations:

Γ ⊢ C : X
Γ ⊢ susp(C) : U(X)

Γ ⊢ V : U(X)

Γ ⊢ force(V) : X

The type F(A) represents computations which return values of type A:

Γ ⊢ V : A
Γ ⊢ ret(V) : F(A)

Γ ⊢ C1 : F(A) Γ, x : A ⊢ C2 : X

Γ ⊢ bind x = C1 in C2 : X

Idea

The U and F type constructors give us a way to express computations as
values (and vice versa)

Hype for Types Call-By-Push-Value October 28, 2024 14 / 23

CBPV and Effects

Idea

In a CBPV program, the types can be used to distinguish pure expressions
to potentially effectful ones

Let’s write the example functions from the beginning in CBPV and look at
their new types (assuming we have the value type bool):

e1 = Left true : bool+ A

e2 = Left (susp(print "meow"; ret(true))) : U(F(bool)) + A

e3 = print "meow"; ret(Left true) : F(bool+ A)

Hype for Types Call-By-Push-Value October 28, 2024 15 / 23

CBPV and Compilers

Hype for Types Call-By-Push-Value October 28, 2024 16 / 23

CBPV as an IR

When translating a piece of source code to our target code, we go through
many intermediate representations (IRs) in order to get our source
program closer to the target while maintaining its correctness.

One such IR can be the CBPV paradigm itself, where we take the source
code and translate it into its CBPV equivalent1:

Translation

If Γ ⊢ e : A, then ∥Γ∥ ⊢ ∥e∥ : F(∥A∥) in CBPV

In other words, we represent each STLC program (i.e. expression) of type
A as a computation which returns type ∥A∥.

Question

Why would it be useful to represent our program as a CBPV computation?

1This is the translation for call-by-value (CBV) dynamics
Hype for Types Call-By-Push-Value October 28, 2024 17 / 23

CBPV as an IR

When translating a piece of source code to our target code, we go through
many intermediate representations (IRs) in order to get our source
program closer to the target while maintaining its correctness.
One such IR can be the CBPV paradigm itself, where we take the source
code and translate it into its CBPV equivalent1:

Translation

If Γ ⊢ e : A, then ∥Γ∥ ⊢ ∥e∥ : F(∥A∥) in CBPV

In other words, we represent each STLC program (i.e. expression) of type
A as a computation which returns type ∥A∥.

Question

Why would it be useful to represent our program as a CBPV computation?

1This is the translation for call-by-value (CBV) dynamics
Hype for Types Call-By-Push-Value October 28, 2024 17 / 23

CBPV as an IR

When translating a piece of source code to our target code, we go through
many intermediate representations (IRs) in order to get our source
program closer to the target while maintaining its correctness.
One such IR can be the CBPV paradigm itself, where we take the source
code and translate it into its CBPV equivalent1:

Translation

If Γ ⊢ e : A, then ∥Γ∥ ⊢ ∥e∥ : F(∥A∥) in CBPV

In other words, we represent each STLC program (i.e. expression) of type
A as a computation which returns type ∥A∥.

Question

Why would it be useful to represent our program as a CBPV computation?

1This is the translation for call-by-value (CBV) dynamics
Hype for Types Call-By-Push-Value October 28, 2024 17 / 23

CBPV as an IR

When translating a piece of source code to our target code, we go through
many intermediate representations (IRs) in order to get our source
program closer to the target while maintaining its correctness.
One such IR can be the CBPV paradigm itself, where we take the source
code and translate it into its CBPV equivalent1:

Translation

If Γ ⊢ e : A, then ∥Γ∥ ⊢ ∥e∥ : F(∥A∥) in CBPV

In other words, we represent each STLC program (i.e. expression) of type
A as a computation which returns type ∥A∥.

Question

Why would it be useful to represent our program as a CBPV computation?

1This is the translation for call-by-value (CBV) dynamics
Hype for Types Call-By-Push-Value October 28, 2024 17 / 23

CBPV as an IR

When translating a piece of source code to our target code, we go through
many intermediate representations (IRs) in order to get our source
program closer to the target while maintaining its correctness.
One such IR can be the CBPV paradigm itself, where we take the source
code and translate it into its CBPV equivalent1:

Translation

If Γ ⊢ e : A, then ∥Γ∥ ⊢ ∥e∥ : F(∥A∥) in CBPV

In other words, we represent each STLC program (i.e. expression) of type
A as a computation which returns type ∥A∥.

Question

Why would it be useful to represent our program as a CBPV computation?

1This is the translation for call-by-value (CBV) dynamics
Hype for Types Call-By-Push-Value October 28, 2024 17 / 23

Closure Conversion

The closure of a function is the environment at the time when the
function was declared:

val x = 1

val y = 2

val f = fn z => x + y + z

Closure conversion is a transformation where we equip function
declarations with their closure, so that they don’t have to depend on the
environment anymore.

Hype for Types Call-By-Push-Value October 28, 2024 18 / 23

Closure Conversion

The closure of a function is the environment at the time when the
function was declared:

val x = 1

val y = 2

val f = fn z => x + y + z

Closure conversion is a transformation where we equip function
declarations with their closure, so that they don’t have to depend on the
environment anymore.

Hype for Types Call-By-Push-Value October 28, 2024 18 / 23

CCBPV

In the CBPV IR, function types undergo the following translation:

∥A1 → A2∥ ≜ U(∥A1∥ → F(∥A2∥))

Since functions are computations, if our program is a function, we suspend
it with a U type.

Idea

Closure conversion happens exactly at U types

Hype for Types Call-By-Push-Value October 28, 2024 19 / 23

CCBPV

In the CBPV IR, function types undergo the following translation:

∥A1 → A2∥ ≜ U(∥A1∥ → F(∥A2∥))

Since functions are computations, if our program is a function, we suspend
it with a U type.

Idea

Closure conversion happens exactly at U types

Hype for Types Call-By-Push-Value October 28, 2024 19 / 23

CCBPV

In the CBPV IR, function types undergo the following translation:

∥A1 → A2∥ ≜ U(∥A1∥ → F(∥A2∥))

Since functions are computations, if our program is a function, we suspend
it with a U type.

Idea

Closure conversion happens exactly at U types

Hype for Types Call-By-Push-Value October 28, 2024 19 / 23

CCBPV

In the CBPV IR, function types undergo the following translation:

∥A1 → A2∥ ≜ U(∥A1∥ → F(∥A2∥))

Since functions are computations, if our program is a function, we suspend
it with a U type.

Idea

Closure conversion happens exactly at U types

Hype for Types Call-By-Push-Value October 28, 2024 19 / 23

CCPV
Our strategy will be to use existential types (∃t.A) to represent the
environment for a suspended computation, and to introduce a new type
(U(X)) for the type of packed closures (that no longer depend on free
variables):

Positive A ::= ...
t
∃t.A
U(X)

Value V ::= ...
pack(A;V)
close(C)

Computation C ::= ...
unpack(V ; x .C)
open(V)

· ⊢ C : X
Γ ⊢ close(C) : U(X)

Γ ⊢ M : U(X)

Γ ⊢ open(M) : X

Hype for Types Call-By-Push-Value October 28, 2024 20 / 23

CCPV
Our strategy will be to use existential types (∃t.A) to represent the
environment for a suspended computation, and to introduce a new type
(U(X)) for the type of packed closures (that no longer depend on free
variables):

Positive A ::= ...
t
∃t.A
U(X)

Value V ::= ...
pack(A;V)
close(C)

Computation C ::= ...
unpack(V ; x .C)
open(V)

· ⊢ C : X
Γ ⊢ close(C) : U(X)

Γ ⊢ M : U(X)

Γ ⊢ open(M) : X

Hype for Types Call-By-Push-Value October 28, 2024 20 / 23

CCPV

We then have the following translation from U to our closure conversion
IR:

∥U(X)∥⇝ ∃t.(t ⊗ U(t → |X |))

For more details, see https://github.com/aricursion/CompileBPV

Hype for Types Call-By-Push-Value October 28, 2024 21 / 23

CCPV

We then have the following translation from U to our closure conversion
IR:

∥U(X)∥⇝ ∃t.(t ⊗ U(t → |X |))

For more details, see https://github.com/aricursion/CompileBPV

Hype for Types Call-By-Push-Value October 28, 2024 21 / 23

Bonus

Paul Blain Levy, the originator of CBPV, suggested the slogan and some
mneumonics in his doctoral thesis2:

Max S. New also gave it a shot in his talk3 on CBPV as an IR:

2https://www.cs.bham.ac.uk/ pbl/papers/thesisqmwphd.pdf
3https://maxsnew.com/docs/mfps2023-slides.pdf

Hype for Types Call-By-Push-Value October 28, 2024 22 / 23

Bonus

Paul Blain Levy, the originator of CBPV, suggested the slogan and some
mneumonics in his doctoral thesis2:

Max S. New also gave it a shot in his talk3 on CBPV as an IR:

2https://www.cs.bham.ac.uk/ pbl/papers/thesisqmwphd.pdf
3https://maxsnew.com/docs/mfps2023-slides.pdf

Hype for Types Call-By-Push-Value October 28, 2024 22 / 23

Conclusion

Hype for Types Call-By-Push-Value October 28, 2024 23 / 23

	Effects
	Call-By-Push-Value
	Polarity
	CBPV and Compilers

