
Parametricity: A Story in Trivializing 15-150

Hype for Types

November 4, 2024

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 1 / 16



Motivation

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 2 / 16



Identity

Recall from last week the function f : ∀X .X → X . A natural question to
as is “how many such functions are there?”

One. Because... you get an x : α and... what else can you do with it
besides return it? Or something...

This is not very satisfying. So, we would like an equational theory for
polymorphic functions to prove that there is only one such function.

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 3 / 16



Identity

Recall from last week the function f : ∀X .X → X . A natural question to
as is “how many such functions are there?”

One. Because...

you get an x : α and... what else can you do with it
besides return it? Or something...

This is not very satisfying. So, we would like an equational theory for
polymorphic functions to prove that there is only one such function.

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 3 / 16



Identity

Recall from last week the function f : ∀X .X → X . A natural question to
as is “how many such functions are there?”

One. Because... you get an x : α and...

what else can you do with it
besides return it? Or something...

This is not very satisfying. So, we would like an equational theory for
polymorphic functions to prove that there is only one such function.

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 3 / 16



Identity

Recall from last week the function f : ∀X .X → X . A natural question to
as is “how many such functions are there?”

One. Because... you get an x : α and... what else can you do with it
besides return it?

Or something...

This is not very satisfying. So, we would like an equational theory for
polymorphic functions to prove that there is only one such function.

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 3 / 16



Identity

Recall from last week the function f : ∀X .X → X . A natural question to
as is “how many such functions are there?”

One. Because... you get an x : α and... what else can you do with it
besides return it? Or something...

This is not very satisfying. So, we would like an equational theory for
polymorphic functions to prove that there is only one such function.

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 3 / 16



Identity

Recall from last week the function f : ∀X .X → X . A natural question to
as is “how many such functions are there?”

One. Because... you get an x : α and... what else can you do with it
besides return it? Or something...

This is not very satisfying. So, we would like an equational theory for
polymorphic functions to prove that there is only one such function.

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 3 / 16



More Generally...

If I give you a function f : ∀X .List(X ) → List(X ), what function do you
expect it to be?

You probably said reverse or duplicate-every-element or
take-the-first-two-elements-and-copy-them-five-times-and-then-
append-the-third-element-to-the-end1 : ∀X .List(X ) → List(X )

The point is that any function you described is returning some
permutation/duplication/removal of the elements which does not refer to
the values themselves.

1Pretend this is total
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 4 / 16



More Generally...

If I give you a function f : ∀X .List(X ) → List(X ), what function do you
expect it to be?

You probably said reverse or duplicate-every-element or
take-the-first-two-elements-and-copy-them-five-times-and-then-
append-the-third-element-to-the-end1 : ∀X .List(X ) → List(X )

The point is that any function you described is returning some
permutation/duplication/removal of the elements which does not refer to
the values themselves.

1Pretend this is total
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 4 / 16



More Generally...

If I give you a function f : ∀X .List(X ) → List(X ), what function do you
expect it to be?

You probably said reverse or duplicate-every-element or
take-the-first-two-elements-and-copy-them-five-times-and-then-
append-the-third-element-to-the-end1 : ∀X .List(X ) → List(X )

The point is that any function you described is returning some
permutation/duplication/removal of the elements which does not refer to
the values themselves.

1Pretend this is total
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 4 / 16



Mapping Over These

Take your function f from before, and now take your favorite function
g : A → B. Consider the following equation:

(map g) ◦ f [A] = f [B] ◦ (map g)

It turns out this is true. The intuition is that since f cannot refer to the
elements themselves, mapping a function g and then permuting the list
should be the same as permuting the list then mapping a function g .

You probably proved something like this in 15-150

For all f : A → B, (map f ) ◦ reverse = reverse ◦ (map f )

by induction on the input list. We hate induction2, let’s do better.

2We at Hype for Types would like to make it known that this is a joke, we love
induction

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 5 / 16



Mapping Over These

Take your function f from before, and now take your favorite function
g : A → B. Consider the following equation:

(map g) ◦ f [A] = f [B] ◦ (map g)

It turns out this is true. The intuition is that since f cannot refer to the
elements themselves, mapping a function g and then permuting the list
should be the same as permuting the list then mapping a function g .

You probably proved something like this in 15-150

For all f : A → B, (map f ) ◦ reverse = reverse ◦ (map f )

by induction on the input list. We hate induction2, let’s do better.

2We at Hype for Types would like to make it known that this is a joke, we love
induction

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 5 / 16



Mapping Over These

Take your function f from before, and now take your favorite function
g : A → B. Consider the following equation:

(map g) ◦ f [A] = f [B] ◦ (map g)

It turns out this is true. The intuition is that since f cannot refer to the
elements themselves, mapping a function g and then permuting the list
should be the same as permuting the list then mapping a function g .

You probably proved something like this in 15-150

For all f : A → B, (map f ) ◦ reverse = reverse ◦ (map f )

by induction on the input list.

We hate induction2, let’s do better.

2We at Hype for Types would like to make it known that this is a joke, we love
induction

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 5 / 16



Mapping Over These

Take your function f from before, and now take your favorite function
g : A → B. Consider the following equation:

(map g) ◦ f [A] = f [B] ◦ (map g)

It turns out this is true. The intuition is that since f cannot refer to the
elements themselves, mapping a function g and then permuting the list
should be the same as permuting the list then mapping a function g .

You probably proved something like this in 15-150

For all f : A → B, (map f ) ◦ reverse = reverse ◦ (map f )

by induction on the input list. We hate induction2, let’s do better.

2We at Hype for Types would like to make it known that this is a joke, we love
induction

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 5 / 16



What the Hype is a Type

Let’s ask a fundamental question: how do you think about types?

You probably view types as sets3:

JBoolK = {0, 1}
JIntK = Z
JA× BK = JAK × JBK

JA → BK = JBKJAK

JList(A)K = JAK∗

This is generally fine, but today we will view types as relations.

3Types are not technically sets, but let’s not get into that right now
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 6 / 16



What the Hype is a Type

Let’s ask a fundamental question: how do you think about types?
You probably view types as sets3:

JBoolK = {0, 1}
JIntK = Z
JA× BK = JAK × JBK

JA → BK = JBKJAK

JList(A)K = JAK∗

This is generally fine, but today we will view types as relations.

3Types are not technically sets, but let’s not get into that right now
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 6 / 16



Some Notation and Ideas

In order to set the scene, we need to introduce some notation:

A : A ⇔ A′ means A is a relation between A and A′, i.e. A ⊆ A× A′

If x ∈ A and x ′ ∈ A′, we write (x , x ′) ∈ A to mean x and x ′ are
related under A
IA is the identity relation on A, i.e. for all x ∈ A, (x , x) ∈ IA
We may view any function f : A → B as a relation Rf : A ⇔ B via
{(a, f a) | a ∈ A}

▶ We can expand this to a relation on lists List(Rf ) : List(A) → List(B),
where {(a,map f a) | a ∈ List(A)}4

Using these ideas, we give an interpretation of types as relations instead of
sets.

4This is a surprise tool that will help us later
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 7 / 16



Some Notation and Ideas

In order to set the scene, we need to introduce some notation:

A : A ⇔ A′ means A is a relation between A and A′, i.e. A ⊆ A× A′

If x ∈ A and x ′ ∈ A′, we write (x , x ′) ∈ A to mean x and x ′ are
related under A
IA is the identity relation on A, i.e. for all x ∈ A, (x , x) ∈ IA
We may view any function f : A → B as a relation Rf : A ⇔ B via
{(a, f a) | a ∈ A}

▶ We can expand this to a relation on lists List(Rf ) : List(A) → List(B),
where {(a,map f a) | a ∈ List(A)}4

Using these ideas, we give an interpretation of types as relations instead of
sets.

4This is a surprise tool that will help us later
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 7 / 16



Some Notation and Ideas

In order to set the scene, we need to introduce some notation:

A : A ⇔ A′ means A is a relation between A and A′, i.e. A ⊆ A× A′

If x ∈ A and x ′ ∈ A′, we write (x , x ′) ∈ A to mean x and x ′ are
related under A

IA is the identity relation on A, i.e. for all x ∈ A, (x , x) ∈ IA
We may view any function f : A → B as a relation Rf : A ⇔ B via
{(a, f a) | a ∈ A}

▶ We can expand this to a relation on lists List(Rf ) : List(A) → List(B),
where {(a,map f a) | a ∈ List(A)}4

Using these ideas, we give an interpretation of types as relations instead of
sets.

4This is a surprise tool that will help us later
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 7 / 16



Some Notation and Ideas

In order to set the scene, we need to introduce some notation:

A : A ⇔ A′ means A is a relation between A and A′, i.e. A ⊆ A× A′

If x ∈ A and x ′ ∈ A′, we write (x , x ′) ∈ A to mean x and x ′ are
related under A
IA is the identity relation on A, i.e. for all x ∈ A, (x , x) ∈ IA

We may view any function f : A → B as a relation Rf : A ⇔ B via
{(a, f a) | a ∈ A}

▶ We can expand this to a relation on lists List(Rf ) : List(A) → List(B),
where {(a,map f a) | a ∈ List(A)}4

Using these ideas, we give an interpretation of types as relations instead of
sets.

4This is a surprise tool that will help us later
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 7 / 16



Some Notation and Ideas

In order to set the scene, we need to introduce some notation:

A : A ⇔ A′ means A is a relation between A and A′, i.e. A ⊆ A× A′

If x ∈ A and x ′ ∈ A′, we write (x , x ′) ∈ A to mean x and x ′ are
related under A
IA is the identity relation on A, i.e. for all x ∈ A, (x , x) ∈ IA
We may view any function f : A → B as a relation Rf : A ⇔ B via
{(a, f a) | a ∈ A}

▶ We can expand this to a relation on lists List(Rf ) : List(A) → List(B),
where {(a,map f a) | a ∈ List(A)}4

Using these ideas, we give an interpretation of types as relations instead of
sets.

4This is a surprise tool that will help us later
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 7 / 16



Some Notation and Ideas

In order to set the scene, we need to introduce some notation:

A : A ⇔ A′ means A is a relation between A and A′, i.e. A ⊆ A× A′

If x ∈ A and x ′ ∈ A′, we write (x , x ′) ∈ A to mean x and x ′ are
related under A
IA is the identity relation on A, i.e. for all x ∈ A, (x , x) ∈ IA
We may view any function f : A → B as a relation Rf : A ⇔ B via
{(a, f a) | a ∈ A}

▶ We can expand this to a relation on lists List(Rf ) : List(A) → List(B),
where {(a,map f a) | a ∈ List(A)}4

Using these ideas, we give an interpretation of types as relations instead of
sets.

4This is a surprise tool that will help us later
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 7 / 16



Some Notation and Ideas

In order to set the scene, we need to introduce some notation:

A : A ⇔ A′ means A is a relation between A and A′, i.e. A ⊆ A× A′

If x ∈ A and x ′ ∈ A′, we write (x , x ′) ∈ A to mean x and x ′ are
related under A
IA is the identity relation on A, i.e. for all x ∈ A, (x , x) ∈ IA
We may view any function f : A → B as a relation Rf : A ⇔ B via
{(a, f a) | a ∈ A}

▶ We can expand this to a relation on lists List(Rf ) : List(A) → List(B),
where {(a,map f a) | a ∈ List(A)}4

Using these ideas, we give an interpretation of types as relations instead of
sets.

4This is a surprise tool that will help us later
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 7 / 16



Types as Relations

We may interpret some basic types as relations in the following manner:

JBoolK = IBool

JIntK = IInt

JA× BK = {((x , y), (x ′, y ′)) | (x , x ′) ∈ A and (y , y ′) ∈ B}

For more complicated types:

For a relation A : A ⇔ A′, we say that (l , l ′) ∈ List(A) if l and l ′ have
the same length and each of their elements are pairwise related by A
For two relations A : A ⇔ A′ and B : B ⇔ B ′, we say that
(f , g) ∈ A → B if, given inputs (x , x ′) ∈ A, we have (f x , g x ′) ∈ B
Polymorphic functions are related if they take related typed to related
outputs

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 8 / 16



Types as Relations

We may interpret some basic types as relations in the following manner:

JBoolK = IBool

JIntK = IInt

JA× BK = {((x , y), (x ′, y ′)) | (x , x ′) ∈ A and (y , y ′) ∈ B}
For more complicated types:

For a relation A : A ⇔ A′, we say that (l , l ′) ∈ List(A) if l and l ′ have
the same length and each of their elements are pairwise related by A
For two relations A : A ⇔ A′ and B : B ⇔ B ′, we say that
(f , g) ∈ A → B if, given inputs (x , x ′) ∈ A, we have (f x , g x ′) ∈ B
Polymorphic functions are related if they take related typed to related
outputs

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 8 / 16



Types as Relations

We may interpret some basic types as relations in the following manner:

JBoolK = IBool

JIntK = IInt

JA× BK = {((x , y), (x ′, y ′)) | (x , x ′) ∈ A and (y , y ′) ∈ B}
For more complicated types:

For a relation A : A ⇔ A′, we say that (l , l ′) ∈ List(A) if l and l ′ have
the same length and each of their elements are pairwise related by A

For two relations A : A ⇔ A′ and B : B ⇔ B ′, we say that
(f , g) ∈ A → B if, given inputs (x , x ′) ∈ A, we have (f x , g x ′) ∈ B
Polymorphic functions are related if they take related typed to related
outputs

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 8 / 16



Types as Relations

We may interpret some basic types as relations in the following manner:

JBoolK = IBool

JIntK = IInt

JA× BK = {((x , y), (x ′, y ′)) | (x , x ′) ∈ A and (y , y ′) ∈ B}
For more complicated types:

For a relation A : A ⇔ A′, we say that (l , l ′) ∈ List(A) if l and l ′ have
the same length and each of their elements are pairwise related by A
For two relations A : A ⇔ A′ and B : B ⇔ B ′, we say that
(f , g) ∈ A → B if, given inputs (x , x ′) ∈ A, we have (f x , g x ′) ∈ B

Polymorphic functions are related if they take related typed to related
outputs

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 8 / 16



Types as Relations

We may interpret some basic types as relations in the following manner:

JBoolK = IBool

JIntK = IInt

JA× BK = {((x , y), (x ′, y ′)) | (x , x ′) ∈ A and (y , y ′) ∈ B}
For more complicated types:

For a relation A : A ⇔ A′, we say that (l , l ′) ∈ List(A) if l and l ′ have
the same length and each of their elements are pairwise related by A
For two relations A : A ⇔ A′ and B : B ⇔ B ′, we say that
(f , g) ∈ A → B if, given inputs (x , x ′) ∈ A, we have (f x , g x ′) ∈ B
Polymorphic functions are related if they take related typed to related
outputs

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 8 / 16



The Big Theorem

Now, we can state the theorem that will allow us to prove the statements
we made previously: The Parametricity Theorem

If t : T , then (t, t) ∈ T

That’s... kinda underwhelming.

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 9 / 16



The Big Theorem

Now, we can state the theorem that will allow us to prove the statements
we made previously: The Parametricity Theorem

If t : T , then (t, t) ∈ T

That’s... kinda underwhelming.

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 9 / 16



The Big Theorem

Now, we can state the theorem that will allow us to prove the statements
we made previously: The Parametricity Theorem

If t : T , then (t, t) ∈ T

That’s... kinda underwhelming.

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 9 / 16



Why Should You Care

Hang on hang on, before you leave, let’s look back at our example from
earlier. Recall, we wanted to prove

For all g : A → B and f : ∀X .List(X ) → List(X ),

(map g) ◦ f [A] = f [B] ◦ (map g)

Maybe our new parametricity theorem can help?

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 10 / 16



Why Should You Care

Hang on hang on, before you leave, let’s look back at our example from
earlier. Recall, we wanted to prove

For all g : A → B and f : ∀X .List(X ) → List(X ),

(map g) ◦ f [A] = f [B] ◦ (map g)

Maybe our new parametricity theorem can help?

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 10 / 16



A Parametrically Polymorphic Proof

1 Parametricity tells us (f , f ) ∈ ∀X .List(X ) → List(X )

2 We can expand this to see that for all relations A : A ⇔ A′,
(f [A], f [A′]) ∈ List(A) → List(A)

3 We can then expand this to see that for all (xs, xs ′) ∈ List(A),
(f [A](xs), f [A′](xs ′)) ∈ List(A)

This seems to be getting us somewhere, but this is too general to be
useful. Let’s focus on when A is the relation Rg for a function
g : A → A′, as defined before. Then, we have:

If xs ∈ List(A), then (xs,map g xs) ∈ List(Rg )

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 11 / 16



A Parametrically Polymorphic Proof

1 Parametricity tells us (f , f ) ∈ ∀X .List(X ) → List(X )

2 We can expand this to see that for all relations A : A ⇔ A′,
(f [A], f [A′]) ∈ List(A) → List(A)

3 We can then expand this to see that for all (xs, xs ′) ∈ List(A),
(f [A](xs), f [A′](xs ′)) ∈ List(A)

This seems to be getting us somewhere, but this is too general to be
useful. Let’s focus on when A is the relation Rg for a function
g : A → A′, as defined before. Then, we have:

If xs ∈ List(A), then (xs,map g xs) ∈ List(Rg )

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 11 / 16



A Parametrically Polymorphic Proof

1 Parametricity tells us (f , f ) ∈ ∀X .List(X ) → List(X )

2 We can expand this to see that for all relations A : A ⇔ A′,
(f [A], f [A′]) ∈ List(A) → List(A)

3 We can then expand this to see that for all (xs, xs ′) ∈ List(A),
(f [A](xs), f [A′](xs ′)) ∈ List(A)

This seems to be getting us somewhere, but this is too general to be
useful. Let’s focus on when A is the relation Rg for a function
g : A → A′, as defined before. Then, we have:

If xs ∈ List(A), then (xs,map g xs) ∈ List(Rg )

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 11 / 16



A Parametrically Polymorphic Proof

1 Parametricity tells us (f , f ) ∈ ∀X .List(X ) → List(X )

2 We can expand this to see that for all relations A : A ⇔ A′,
(f [A], f [A′]) ∈ List(A) → List(A)

3 We can then expand this to see that for all (xs, xs ′) ∈ List(A),
(f [A](xs), f [A′](xs ′)) ∈ List(A)

This seems to be getting us somewhere, but this is too general to be
useful. Let’s focus on when A is the relation Rg for a function
g : A → A′, as defined before. Then, we have:

If xs ∈ List(A), then (xs,map g xs) ∈ List(Rg )

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 11 / 16



A Parametrically Polymorphic Proof

4 From the previous slide, we deduced that for all (xs, xs ′) ∈ List(A),
(f [A](xs), f [A′](xs ′)) ∈ List(A)

5 If we set A = Rg , we get that for all g : A → A′, if
(xs,map g xs) ∈ List(Rg ), then
(f [A](xs), f [A′](map g xs)) ∈ List(Rg )

6 Recall that the relation for functions relates inputs to their outputs.
Since we have (f [A](xs), f [A′](map g xs)) ∈ List(Rg ), this must
mean that

map g (f [A](xs)) = f [A′](map g xs)

In other words, we have

(map g) ◦ f [A] = f [A′] ◦ (map g)

as desired!

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 12 / 16



A Parametrically Polymorphic Proof

4 From the previous slide, we deduced that for all (xs, xs ′) ∈ List(A),
(f [A](xs), f [A′](xs ′)) ∈ List(A)

5 If we set A = Rg , we get that for all g : A → A′, if
(xs,map g xs) ∈ List(Rg ), then
(f [A](xs), f [A′](map g xs)) ∈ List(Rg )

6 Recall that the relation for functions relates inputs to their outputs.
Since we have (f [A](xs), f [A′](map g xs)) ∈ List(Rg ), this must
mean that

map g (f [A](xs)) = f [A′](map g xs)

In other words, we have

(map g) ◦ f [A] = f [A′] ◦ (map g)

as desired!

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 12 / 16



A Parametrically Polymorphic Proof

4 From the previous slide, we deduced that for all (xs, xs ′) ∈ List(A),
(f [A](xs), f [A′](xs ′)) ∈ List(A)

5 If we set A = Rg , we get that for all g : A → A′, if
(xs,map g xs) ∈ List(Rg ), then
(f [A](xs), f [A′](map g xs)) ∈ List(Rg )

6 Recall that the relation for functions relates inputs to their outputs.
Since we have (f [A](xs), f [A′](map g xs)) ∈ List(Rg ), this must
mean that

map g (f [A](xs)) = f [A′](map g xs)

In other words, we have

(map g) ◦ f [A] = f [A′] ◦ (map g)

as desired!

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 12 / 16



A Parametrically Polymorphic Proof

4 From the previous slide, we deduced that for all (xs, xs ′) ∈ List(A),
(f [A](xs), f [A′](xs ′)) ∈ List(A)

5 If we set A = Rg , we get that for all g : A → A′, if
(xs,map g xs) ∈ List(Rg ), then
(f [A](xs), f [A′](map g xs)) ∈ List(Rg )

6 Recall that the relation for functions relates inputs to their outputs.
Since we have (f [A](xs), f [A′](map g xs)) ∈ List(Rg ), this must
mean that

map g (f [A](xs)) = f [A′](map g xs)

In other words, we have

(map g) ◦ f [A] = f [A′] ◦ (map g)

as desired!

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 12 / 16



15-150? More Like... Parametricity Theorem

We did it! Not only did we prove that

(map f ) ◦ reverse = reverse ◦ (map f )

we managed to prove something way more general!

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 13 / 16



The Original Goal

We claim that if f : ∀X .X → X , then f = id5. You know this intuitively,
but we can use parametricity to prove this!

1 We start with (f , f ) ∈ ∀X .X → X by the Parametricity Theorem

2 We then have that (f [A], f [A′]) ∈ A → A for A : A ⇔ A′

3 This then means that, for (x , x ′) ∈ A, we have
(f [A](x), f [A′](x ′)) ∈ A

As with the other proof, we get to a point where we need to make a
specific choice for A. Here, we will choose Rg , which states that, for all
g : A → A′, (x , g x) ∈ Rg for x ∈ A.

5That is to say that its behavior is equivalent to the identity
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 14 / 16



The Original Goal

We claim that if f : ∀X .X → X , then f = id5. You know this intuitively,
but we can use parametricity to prove this!

1 We start with (f , f ) ∈ ∀X .X → X by the Parametricity Theorem

2 We then have that (f [A], f [A′]) ∈ A → A for A : A ⇔ A′

3 This then means that, for (x , x ′) ∈ A, we have
(f [A](x), f [A′](x ′)) ∈ A

As with the other proof, we get to a point where we need to make a
specific choice for A. Here, we will choose Rg , which states that, for all
g : A → A′, (x , g x) ∈ Rg for x ∈ A.

5That is to say that its behavior is equivalent to the identity
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 14 / 16



The Original Goal

We claim that if f : ∀X .X → X , then f = id5. You know this intuitively,
but we can use parametricity to prove this!

1 We start with (f , f ) ∈ ∀X .X → X by the Parametricity Theorem

2 We then have that (f [A], f [A′]) ∈ A → A for A : A ⇔ A′

3 This then means that, for (x , x ′) ∈ A, we have
(f [A](x), f [A′](x ′)) ∈ A

As with the other proof, we get to a point where we need to make a
specific choice for A. Here, we will choose Rg , which states that, for all
g : A → A′, (x , g x) ∈ Rg for x ∈ A.

5That is to say that its behavior is equivalent to the identity
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 14 / 16



The Original Goal

We claim that if f : ∀X .X → X , then f = id5. You know this intuitively,
but we can use parametricity to prove this!

1 We start with (f , f ) ∈ ∀X .X → X by the Parametricity Theorem

2 We then have that (f [A], f [A′]) ∈ A → A for A : A ⇔ A′

3 This then means that, for (x , x ′) ∈ A, we have
(f [A](x), f [A′](x ′)) ∈ A

As with the other proof, we get to a point where we need to make a
specific choice for A. Here, we will choose Rg , which states that, for all
g : A → A′, (x , g x) ∈ Rg for x ∈ A.

5That is to say that its behavior is equivalent to the identity
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 14 / 16



The Original Goal

We claim that if f : ∀X .X → X , then f = id5. You know this intuitively,
but we can use parametricity to prove this!

1 We start with (f , f ) ∈ ∀X .X → X by the Parametricity Theorem

2 We then have that (f [A], f [A′]) ∈ A → A for A : A ⇔ A′

3 This then means that, for (x , x ′) ∈ A, we have
(f [A](x), f [A′](x ′)) ∈ A

As with the other proof, we get to a point where we need to make a
specific choice for A. Here, we will choose Rg , which states that, for all
g : A → A′, (x , g x) ∈ Rg for x ∈ A.

5That is to say that its behavior is equivalent to the identity
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 14 / 16



The Original Goal
4 For all g : A → A′, if (x , g x) ∈ Rg , then (f [A](x), f [A′](g x)) ∈ Rg

5 Since we’re relating inputs to outputs, it must be the case that

g(f [A](x)) = f [A′](g x)

for all x ∈ A

To show what we ultimately want to show (that f is the identity), we need
one more trick.

All we need to do is to choose g to be λ : A. x , i.e. a function that
returns the input x : A. We then have

g(f [A](x)) = x and f [A](g x) = f [A](x)

i.e.
f [A](x) = x

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 15 / 16



The Original Goal
4 For all g : A → A′, if (x , g x) ∈ Rg , then (f [A](x), f [A′](g x)) ∈ Rg

5 Since we’re relating inputs to outputs, it must be the case that

g(f [A](x)) = f [A′](g x)

for all x ∈ A

To show what we ultimately want to show (that f is the identity), we need
one more trick.

All we need to do is to choose g to be λ : A. x , i.e. a function that
returns the input x : A. We then have

g(f [A](x)) = x and f [A](g x) = f [A](x)

i.e.
f [A](x) = x

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 15 / 16



The Original Goal
4 For all g : A → A′, if (x , g x) ∈ Rg , then (f [A](x), f [A′](g x)) ∈ Rg

5 Since we’re relating inputs to outputs, it must be the case that

g(f [A](x)) = f [A′](g x)

for all x ∈ A

To show what we ultimately want to show (that f is the identity), we need
one more trick.

All we need to do is to choose g to be λ : A. x , i.e. a function that
returns the input x : A. We then have

g(f [A](x)) = x and f [A](g x) = f [A](x)

i.e.
f [A](x) = x

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 15 / 16



The Original Goal
4 For all g : A → A′, if (x , g x) ∈ Rg , then (f [A](x), f [A′](g x)) ∈ Rg

5 Since we’re relating inputs to outputs, it must be the case that

g(f [A](x)) = f [A′](g x)

for all x ∈ A

To show what we ultimately want to show (that f is the identity), we need
one more trick.

All we need to do is to choose g to be λ : A. x , i.e. a function that
returns the input x : A.

We then have

g(f [A](x)) = x and f [A](g x) = f [A](x)

i.e.
f [A](x) = x

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 15 / 16



The Original Goal
4 For all g : A → A′, if (x , g x) ∈ Rg , then (f [A](x), f [A′](g x)) ∈ Rg

5 Since we’re relating inputs to outputs, it must be the case that

g(f [A](x)) = f [A′](g x)

for all x ∈ A

To show what we ultimately want to show (that f is the identity), we need
one more trick.

All we need to do is to choose g to be λ : A. x , i.e. a function that
returns the input x : A. We then have

g(f [A](x)) = x and f [A](g x) = f [A](x)

i.e.
f [A](x) = x

Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 15 / 16



Free Theorems

Theorems of this form are called “free theorems” named after Phillip
Wadler’s paper called, unsurprisingly, “Theorems for Free”6.

Such theorems are direct consequences of the Parametricity Theorem
and allow you to prove basically any 15-150 style equality... for free!

The website https://free-theorems.nomeata.de/ allows you to
generate these free theorems for a given polymorphic type.

6https://dl.acm.org/doi/pdf/10.1145/99370.99404
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 16 / 16



Free Theorems

Theorems of this form are called “free theorems” named after Phillip
Wadler’s paper called, unsurprisingly, “Theorems for Free”6.

Such theorems are direct consequences of the Parametricity Theorem
and allow you to prove basically any 15-150 style equality... for free!

The website https://free-theorems.nomeata.de/ allows you to
generate these free theorems for a given polymorphic type.

6https://dl.acm.org/doi/pdf/10.1145/99370.99404
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 16 / 16



Free Theorems

Theorems of this form are called “free theorems” named after Phillip
Wadler’s paper called, unsurprisingly, “Theorems for Free”6.

Such theorems are direct consequences of the Parametricity Theorem
and allow you to prove basically any 15-150 style equality... for free!

The website https://free-theorems.nomeata.de/ allows you to
generate these free theorems for a given polymorphic type.

6https://dl.acm.org/doi/pdf/10.1145/99370.99404
Hype for Types Parametricity: A Story in Trivializing 15-150 November 4, 2024 16 / 16


	Motivation

