
Monads

Hype for Types

November 11, 2024

Hype for Types Monads November 11, 2024 1 / 1



Mappables1

1Well, “functors”, but that’s already a thing in SML...
Hype for Types Monads November 11, 2024 2 / 1



Shmategory Weary

Suppose we have some type ’a, and we consider all of the functions it is
“equipped” with (i.e. all functions of type ’a -> ’b for some type ’b).

We can think of any functions ’a -> ’b as being a relationship between
the types ’a and ’b.

Suppose we also wanted to “transform” the type ’a into the type ’a
list.

Question

How would this affect the function ’a -> ’b? How do we perform the
transformation such that the relationship between ’a and ’b is preserved?

Hype for Types Monads November 11, 2024 3 / 1



Shmategory Weary

Suppose we have some type ’a, and we consider all of the functions it is
“equipped” with (i.e. all functions of type ’a -> ’b for some type ’b).

We can think of any functions ’a -> ’b as being a relationship between
the types ’a and ’b.

Suppose we also wanted to “transform” the type ’a into the type ’a
list.

Question

How would this affect the function ’a -> ’b? How do we perform the
transformation such that the relationship between ’a and ’b is preserved?

Hype for Types Monads November 11, 2024 3 / 1



Shmategory Weary

Suppose we have some type ’a, and we consider all of the functions it is
“equipped” with (i.e. all functions of type ’a -> ’b for some type ’b).

We can think of any functions ’a -> ’b as being a relationship between
the types ’a and ’b.

Suppose we also wanted to “transform” the type ’a into the type ’a
list.

Question

How would this affect the function ’a -> ’b? How do we perform the
transformation such that the relationship between ’a and ’b is preserved?

Hype for Types Monads November 11, 2024 3 / 1



Shmategory Weary

Suppose we have some type ’a, and we consider all of the functions it is
“equipped” with (i.e. all functions of type ’a -> ’b for some type ’b).

We can think of any functions ’a -> ’b as being a relationship between
the types ’a and ’b.

Suppose we also wanted to “transform” the type ’a into the type ’a
list.

Question

How would this affect the function ’a -> ’b? How do we perform the
transformation such that the relationship between ’a and ’b is preserved?

Hype for Types Monads November 11, 2024 3 / 1



From Types to Types

Consider the following transformation:

type ’a map_obj = ’a list

fun map_arr f = List.map f

where we

take a type t and turn it into type t list

take a function f : t -> u and turn it into a function
List.map f : t list -> u list

Hype for Types Monads November 11, 2024 4 / 1



From Types to Types

Consider the following transformation:

type ’a map_obj = ’a list

fun map_arr f = List.map f

where we

take a type t and turn it into type t list

take a function f : t -> u and turn it into a function
List.map f : t list -> u list

Hype for Types Monads November 11, 2024 4 / 1



From Types to Types

Consider the following transformation:

type ’a map_obj = ’a list

fun map_arr f = List.map f

where we

take a type t and turn it into type t list

take a function f : t -> u and turn it into a function
List.map f : t list -> u list

Hype for Types Monads November 11, 2024 4 / 1



Visualizing Lists

t list u list

t u

List.map f

f

Key Idea

Even though the types ’a and ’b are now different, the relationship
between them has been preserved by the transformation.

Hype for Types Monads November 11, 2024 5 / 1



Visualizing Lists

t list u list

t u

List.map f

f

Key Idea

Even though the types ’a and ’b are now different, the relationship
between them has been preserved by the transformation.

Hype for Types Monads November 11, 2024 5 / 1



Mappables?

Why stop at lists? How would we define a transformation for any arbitrary
destination type?

Definition?

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

end

Hype for Types Monads November 11, 2024 6 / 1



Mappables?

Why stop at lists? How would we define a transformation for any arbitrary
destination type?

Definition?

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

end

Hype for Types Monads November 11, 2024 6 / 1



Mappables?

Why stop at lists? How would we define a transformation for any arbitrary
destination type?

Definition?

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

end

Hype for Types Monads November 11, 2024 6 / 1



Mappables?

Why stop at lists? How would we define a transformation for any arbitrary
destination type?

Definition?

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

end

Hype for Types Monads November 11, 2024 6 / 1



Which map?

Let’s go back to our list transformation.

There are countless functions we could have chosen for our transformation
that have type (’a -> ’b) -> ’a list -> ’b list:

type ’a map_obj = ’a list

fun map_arr1 f =

fn _ => []

fun map_arr2 f =

fn l => List.map f (List.rev l)

fun map_arr3 f =

fn [] => []

| _::xs => List.map f xs

Hype for Types Monads November 11, 2024 7 / 1



Which map?

Let’s go back to our list transformation.

There are countless functions we could have chosen for our transformation
that have type (’a -> ’b) -> ’a list -> ’b list:

type ’a map_obj = ’a list

fun map_arr1 f =

fn _ => []

fun map_arr2 f =

fn l => List.map f (List.rev l)

fun map_arr3 f =

fn [] => []

| _::xs => List.map f xs

Hype for Types Monads November 11, 2024 7 / 1



Which map?

Let’s go back to our list transformation.

There are countless functions we could have chosen for our transformation
that have type (’a -> ’b) -> ’a list -> ’b list:

type ’a map_obj = ’a list

fun map_arr1 f =

fn _ => []

fun map_arr2 f =

fn l => List.map f (List.rev l)

fun map_arr3 f =

fn [] => []

| _::xs => List.map f xs

Hype for Types Monads November 11, 2024 7 / 1



Not this map

If we want our transformation to maintain the relationship between the
types, then some of those suggestions, while having the right type, are
problematic.

We would want our transformation on functions to maintain the following:

The identity function id : ’a -> ’a is transformed into the
identity function id’ : ’a t -> ’a t for the new type

For any functions f : ’a -> ’b and g : ’b -> ’c,
map (f o g) = (map f) o (map g)

Hype for Types Monads November 11, 2024 8 / 1



Not this map

If we want our transformation to maintain the relationship between the
types, then some of those suggestions, while having the right type, are
problematic.

We would want our transformation on functions to maintain the following:

The identity function id : ’a -> ’a is transformed into the
identity function id’ : ’a t -> ’a t for the new type

For any functions f : ’a -> ’b and g : ’b -> ’c,
map (f o g) = (map f) o (map g)

Hype for Types Monads November 11, 2024 8 / 1



Not this map

If we want our transformation to maintain the relationship between the
types, then some of those suggestions, while having the right type, are
problematic.

We would want our transformation on functions to maintain the following:

The identity function id : ’a -> ’a is transformed into the
identity function id’ : ’a t -> ’a t for the new type

For any functions f : ’a -> ’b and g : ’b -> ’c,
map (f o g) = (map f) o (map g)

Hype for Types Monads November 11, 2024 8 / 1



Not this map

If we want our transformation to maintain the relationship between the
types, then some of those suggestions, while having the right type, are
problematic.

We would want our transformation on functions to maintain the following:

The identity function id : ’a -> ’a is transformed into the
identity function id’ : ’a t -> ’a t for the new type

For any functions f : ’a -> ’b and g : ’b -> ’c,
map (f o g) = (map f) o (map g)

Hype for Types Monads November 11, 2024 8 / 1



Mappables

Definition

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

upholds map id =’a t → ’a t id

upholds map f o map g = map (f o g)

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

(* invariants: ... *)

end

Hype for Types Monads November 11, 2024 9 / 1



Mappables

Definition

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

upholds map id =’a t → ’a t id

upholds map f o map g = map (f o g)

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

(* invariants: ... *)

end

Hype for Types Monads November 11, 2024 9 / 1



Mappables

Definition

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

upholds map id =’a t → ’a t id

upholds map f o map g = map (f o g)

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

(* invariants: ... *)

end

Hype for Types Monads November 11, 2024 9 / 1



Mappables

Definition

A mappable M is the data:

type ’a t

value map : (’a -> ’b) -> ’a t -> ’b t

upholds map id =’a t → ’a t id

upholds map f o map g = map (f o g)

In other words:

signature MAPPABLE =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

(* invariants: ... *)

end

Hype for Types Monads November 11, 2024 9 / 1



Optimization: Loop Fusion!

If we have:

int[n] arr;

for (int i = 0; i < n; i++)

arr[i] = f(arr[i]);

for (int i = 0; i < n; i++)

arr[i] = g(arr[i]);

then it must be equivalent to:2

for (int i = 0; i < n; i++)

arr[i] = g(f(arr[i]));

2Not just for lists - any data structure with a “sensible” notion of map works!
Hype for Types Monads November 11, 2024 10 / 1



Optimization: Loop Fusion!

If we have:

int[n] arr;

for (int i = 0; i < n; i++)

arr[i] = f(arr[i]);

for (int i = 0; i < n; i++)

arr[i] = g(arr[i]);

then it must be equivalent to:2

for (int i = 0; i < n; i++)

arr[i] = g(f(arr[i]));

2Not just for lists - any data structure with a “sensible” notion of map works!
Hype for Types Monads November 11, 2024 10 / 1



Some Example Mappables

Lists

Options

Trees

Streams

Functions int -> ’a

...

i.e., (almost) anything polymorphic.

Conclusion

It’s a useful abstraction!

Hype for Types Monads November 11, 2024 11 / 1



Some Example Mappables

Lists

Options

Trees

Streams

Functions int -> ’a

...

i.e., (almost) anything polymorphic.

Conclusion

It’s a useful abstraction!

Hype for Types Monads November 11, 2024 11 / 1



Monads

Hype for Types Monads November 11, 2024 12 / 1



Descent into partial madness

Partial functions return options

:

sqrt : int -> int option

div : (int * int) -> int option

head : ’a list -> ’a option

tail : ’a list -> ’a list option

How would we write the partial version of tail_3?

(* tail_3 : ’a list -> ’a list *)

fun tail_3 (_::_::_::L) = L

Hype for Types Monads November 11, 2024 13 / 1



Descent into partial madness

Partial functions return options:

sqrt : int -> int option

div : (int * int) -> int option

head : ’a list -> ’a option

tail : ’a list -> ’a list option

How would we write the partial version of tail_3?

(* tail_3 : ’a list -> ’a list *)

fun tail_3 (_::_::_::L) = L

Hype for Types Monads November 11, 2024 13 / 1



Descent into partial madness

Partial functions return options:

sqrt : int -> int option

div : (int * int) -> int option

head : ’a list -> ’a option

tail : ’a list -> ’a list option

How would we write the partial version of tail_3?

(* tail_3 : ’a list -> ’a list *)

fun tail_3 (_::_::_::L) = L

Hype for Types Monads November 11, 2024 13 / 1



Descent into partial madness

Partial functions return options:

sqrt : int -> int option

div : (int * int) -> int option

head : ’a list -> ’a option

tail : ’a list -> ’a list option

How would we write the partial version of tail_3?

(* tail_3 : ’a list -> ’a list *)

fun tail_3 (_::_::_::L) = L

Hype for Types Monads November 11, 2024 13 / 1



Descent into partial madness

Partial functions return options:

sqrt : int -> int option

div : (int * int) -> int option

head : ’a list -> ’a option

tail : ’a list -> ’a list option

How would we write the partial version of tail_3?

(* tail_3 : ’a list -> ’a list *)

fun tail_3 (_::_::_::L) = L

Hype for Types Monads November 11, 2024 13 / 1



Descent into partial madness

Partial functions return options:

sqrt : int -> int option

div : (int * int) -> int option

head : ’a list -> ’a option

tail : ’a list -> ’a list option

How would we write the partial version of tail_3?

(* tail_3 : ’a list -> ’a list *)

fun tail_3 (_::_::_::L) = L

Hype for Types Monads November 11, 2024 13 / 1



Composing partial functions

How would we write the partial version of tail_3?

tail_3 : ’a list -> ’a list option

Partial madness!

fun tail_3 L0 =

case tail L0 of

NONE => NONE

| SOME L1 =>

(case tail L1 of

NONE => NONE

| SOME L2 => tail L2)

What about tail_5?

Hype for Types Monads November 11, 2024 14 / 1



Composing partial functions

How would we write the partial version of tail_3?

tail_3 : ’a list -> ’a list option

Partial madness!

fun tail_3 L0 =

case tail L0 of

NONE => NONE

| SOME L1 =>

(case tail L1 of

NONE => NONE

| SOME L2 => tail L2)

What about tail_5?

Hype for Types Monads November 11, 2024 14 / 1



Composing partial functions

How would we write the partial version of tail_3?

tail_3 : ’a list -> ’a list option

Partial madness!

fun tail_3 L0 =

case tail L0 of

NONE => NONE

| SOME L1 =>

(case tail L1 of

NONE => NONE

| SOME L2 => tail L2)

What about tail_5?

Hype for Types Monads November 11, 2024 14 / 1



Composing partial functions (again)
How would we write the partial version of tail_5?

tail_5 : ’a list -> ’a list option

If only...

val tail_5 = tail o tail o tail o tail o tail

However, tail : ’a list -> ’a list option, so we can’t compose
them like this.

Let’s consider another kind of compose:

o : (’b -> ’c) * (’a -> ’b) -> (’a -> ’c)

<=< : (’b -> ’c opt) * (’a -> ’b opt) -> (’a -> ’c opt)

Ta-da!

val tail_5 =

tail <=< tail <=< tail <=< tail <=< tail

Hype for Types Monads November 11, 2024 15 / 1



Composing partial functions (again)
How would we write the partial version of tail_5?

tail_5 : ’a list -> ’a list option

If only...

val tail_5 = tail o tail o tail o tail o tail

However, tail : ’a list -> ’a list option, so we can’t compose
them like this.

Let’s consider another kind of compose:

o : (’b -> ’c) * (’a -> ’b) -> (’a -> ’c)

<=< : (’b -> ’c opt) * (’a -> ’b opt) -> (’a -> ’c opt)

Ta-da!

val tail_5 =

tail <=< tail <=< tail <=< tail <=< tail

Hype for Types Monads November 11, 2024 15 / 1



Composing partial functions (again)
How would we write the partial version of tail_5?

tail_5 : ’a list -> ’a list option

If only...

val tail_5 = tail o tail o tail o tail o tail

However, tail : ’a list -> ’a list option, so we can’t compose
them like this.

Let’s consider another kind of compose:

o : (’b -> ’c) * (’a -> ’b) -> (’a -> ’c)

<=< : (’b -> ’c opt) * (’a -> ’b opt) -> (’a -> ’c opt)

Ta-da!

val tail_5 =

tail <=< tail <=< tail <=< tail <=< tail

Hype for Types Monads November 11, 2024 15 / 1



Composing partial functions (again)
How would we write the partial version of tail_5?

tail_5 : ’a list -> ’a list option

If only...

val tail_5 = tail o tail o tail o tail o tail

However, tail : ’a list -> ’a list option, so we can’t compose
them like this.

Let’s consider another kind of compose:

o : (’b -> ’c) * (’a -> ’b) -> (’a -> ’c)

<=< : (’b -> ’c opt) * (’a -> ’b opt) -> (’a -> ’c opt)

Ta-da!

val tail_5 =

tail <=< tail <=< tail <=< tail <=< tail

Hype for Types Monads November 11, 2024 15 / 1



More than composition
Take a look at these Option functions:

type ’a t = ’a option

Option.composePartial

val <=< :

(’b -> ’c t) * (’a -> ’b t) -> (’a -> ’c t)

Option.map

val >>| : ’a t * (’a -> ’b) -> ’b t

Option.mapPartial

val >>= : ’a t * (’a -> ’b t) -> ’b t

Option.join

val join : ’a t t -> ’a t

Option.SOME

val return : ’a -> ’a t

Hype for Types Monads November 11, 2024 16 / 1



More than composition
Take a look at these Option functions:

type ’a t = ’a option

Option.composePartial

val <=< :

(’b -> ’c t) * (’a -> ’b t) -> (’a -> ’c t)

Option.map

val >>| : ’a t * (’a -> ’b) -> ’b t

Option.mapPartial

val >>= : ’a t * (’a -> ’b t) -> ’b t

Option.join

val join : ’a t t -> ’a t

Option.SOME

val return : ’a -> ’a t

Hype for Types Monads November 11, 2024 16 / 1



More than composition
Take a look at these Option functions:

type ’a t = ’a option

Option.composePartial

val <=< :

(’b -> ’c t) * (’a -> ’b t) -> (’a -> ’c t)

Option.map

val >>| : ’a t * (’a -> ’b) -> ’b t

Option.mapPartial

val >>= : ’a t * (’a -> ’b t) -> ’b t

Option.join

val join : ’a t t -> ’a t

Option.SOME

val return : ’a -> ’a t

Hype for Types Monads November 11, 2024 16 / 1



More than composition
Take a look at these Option functions:

type ’a t = ’a option

Option.composePartial

val <=< :

(’b -> ’c t) * (’a -> ’b t) -> (’a -> ’c t)

Option.map

val >>| : ’a t * (’a -> ’b) -> ’b t

Option.mapPartial

val >>= : ’a t * (’a -> ’b t) -> ’b t

Option.join

val join : ’a t t -> ’a t

Option.SOME

val return : ’a -> ’a t

Hype for Types Monads November 11, 2024 16 / 1



More than composition
Take a look at these Option functions:

type ’a t = ’a option

Option.composePartial

val <=< :

(’b -> ’c t) * (’a -> ’b t) -> (’a -> ’c t)

Option.map

val >>| : ’a t * (’a -> ’b) -> ’b t

Option.mapPartial

val >>= : ’a t * (’a -> ’b t) -> ’b t

Option.join

val join : ’a t t -> ’a t

Option.SOME

val return : ’a -> ’a t

Hype for Types Monads November 11, 2024 16 / 1



Programming with bind

fun sum_options (a : int option) (b : int option) =

a >>= fn a’ =>

b >>= fn b’ =>

SOME (a’ + b’)

fun tail_5 L0 =

tail L0 >>= fn L1 =>

tail L1 >>= fn L2 =>

tail L2 >>= fn L3 =>

tail L3 >>= fn L4 =>

tail L4

fun tail_5 L0 =

tail L0 >>= tail >>= tail >>= tail >>= tail

Hype for Types Monads November 11, 2024 17 / 1



Programming with bind

fun sum_options (a : int option) (b : int option) =

a >>= fn a’ =>

b >>= fn b’ =>

return (a’ + b’)

fun tail_5 L0 =

tail L0 >>= fn L1 =>

tail L1 >>= fn L2 =>

tail L2 >>= fn L3 =>

tail L3 >>= fn L4 =>

tail L4

fun tail_5 L0 =

tail L0 >>= tail >>= tail >>= tail >>= tail

Hype for Types Monads November 11, 2024 17 / 1



Programming with bind

fun sum_options (a : int option) (b : int option) =

a >>= fn a’ =>

b >>| fn b’ =>

a’ + b’

fun tail_5 L0 =

tail L0 >>= fn L1 =>

tail L1 >>= fn L2 =>

tail L2 >>= fn L3 =>

tail L3 >>= fn L4 =>

tail L4

fun tail_5 L0 =

tail L0 >>= tail >>= tail >>= tail >>= tail

Hype for Types Monads November 11, 2024 17 / 1



Programming with bind

fun sum_options (a : int option) (b : int option) =

a >>= fn a’ =>

b >>| fn b’ =>

a’ + b’

fun tail_5 L0 =

tail L0 >>= fn L1 =>

tail L1 >>= fn L2 =>

tail L2 >>= fn L3 =>

tail L3 >>= fn L4 =>

tail L4

fun tail_5 L0 =

tail L0 >>= tail >>= tail >>= tail >>= tail

Hype for Types Monads November 11, 2024 17 / 1



Programming with bind

fun sum_options (a : int option) (b : int option) =

a >>= fn a’ =>

b >>| fn b’ =>

a’ + b’

fun tail_5 L0 =

tail L0 >>= fn L1 =>

tail L1 >>= fn L2 =>

tail L2 >>= fn L3 =>

tail L3 >>= fn L4 =>

tail L4

fun tail_5 L0 =

tail L0 >>= tail >>= tail >>= tail >>= tail

Hype for Types Monads November 11, 2024 17 / 1



OCaml loves this!

open Option.Let_syntax

let sum_options (a : int option) (b : int option) =

let%bind a’ = a in

let%map b’ = b in

a’ + b’

let tail_5 L0 =

let%bind L1 = tail L0 in

let%bind L2 = tail L1 in

let%bind L3 = tail L2 in

let%bind L4 = tail L3 in

tail L4

Hype for Types Monads November 11, 2024 18 / 1



OCaml loves this!

open Option.Let_syntax

let sum_options (a : int option) (b : int option) =

let%bind a’ = a in

let%map b’ = b in

a’ + b’

let tail_5 L0 =

let%bind L1 = tail L0 in

let%bind L2 = tail L1 in

let%bind L3 = tail L2 in

let%bind L4 = tail L3 in

tail L4

Hype for Types Monads November 11, 2024 18 / 1



More than just options: Or_error

open Or_error.Let_syntax

type ’a t = Ok of ’a | Error of Error.t

let divide (x : int) (y : int) : int Or_error.t =

if y = 0

then Or_error.error_string ":("

else Or_error.return (x div y)

let _ : string Or_error.t =

let%bind x = divide 10 3 in

let%map y = divide x 0 in

string_of_int (x + y)

Hype for Types Monads November 11, 2024 19 / 1



More than just options: Deferred

open Async

type ’a t = ’a Deferred.t

let is_same (f1 : string) (f2 : string)

: bool Deferred.t =

let%bind contents1 = Reader.file_contents f1 in

let%bind contents2 = Reader.file_contents f2 in

return (String.equal contents1 contents2)

Hype for Types Monads November 11, 2024 20 / 1



Useful pattern!

Key Idea

Monads are a useful programming tool!

signature MONAD =

sig

type ’a t

val bind : ’a t * (’a -> ’b t) -> ’b t

val return : ’a -> ’a t

end

Hype for Types Monads November 11, 2024 21 / 1



Monads are like burritos

A monad is a special kind of a mappable. A mappable F takes
each type T and maps it to a new type FT. A burrito is like a
mappable: it takes a type, like meat or beans, and turns it into a
new type, like beef burrito or bean burrito.

Hype for Types Monads November 11, 2024 22 / 1



Monads are like burritos

A mappable must also be equipped with a map function that
lifts functions over the original type into functions over the new
type. For example, you can add chopped jalapeños or shredded
cheese to any type, like meat or beans; the lifted version of this
function adds chopped jalapeños or shredded cheese to the corre-
sponding burrito.

Hype for Types Monads November 11, 2024 23 / 1



Monads are like burritos

A monad must also possess a return function that takes a
regular value, such as a particular batch of meat, and turns it into
a burrito. The unit function for burritos is obviously a tortilla.

Hype for Types Monads November 11, 2024 24 / 1



Monads are like burritos

Finally, a monad must have a bind function that takes a bur-
rito, tells you how to shuffle the ingredients, and turns it into a
new burrito. For example, given a burrito, you can unwrap the
tortilla, add cheese, and rewrap it.

Hype for Types Monads November 11, 2024 25 / 1



Monads are like burritos

The map, bind, and return functions must satisfy certain
laws. For example, if B is already a burrito, and not merely a
filling for a burrito, then B >>= return must be the same as B.
This means that if you have a burrito, unwrap the burrito, and
rewrap it in a new tortilla, its the same as the original burrito.

Hype for Types Monads November 11, 2024 26 / 1


