Monads

Hype for Types

November 11, 2024

Hype for Types Monads



Mappables!

"Well, “functors”, but that's already a thing in SML... = = - = DA




Shmategory Weary

Suppose we have some type ’a, and we consider all of the functions it is
“equipped” with (i.e. all functions of type a -> ’b for some type ’b).

Hype for Types Monads November 11, 2024 3/1



Shmategory Weary

Suppose we have some type ’a, and we consider all of the functions it is
“equipped” with (i.e. all functions of type a -> ’b for some type ’b).

We can think of any functions a -> ’b as being a relationship between
the types ’a and ’b.

Hype for Types Monads November 11, 2024 3/1



Shmategory Weary

Suppose we have some type ’a, and we consider all of the functions it is
“equipped” with (i.e. all functions of type a -> ’b for some type ’b).

We can think of any functions a -> ’b as being a relationship between
the types ’a and ’b.

Suppose we also wanted to “transform” the type ’a into the type ’a
list.

Hype for Types Monads November 11, 2024 3/1



Shmategory Weary

Suppose we have some type ’a, and we consider all of the functions it is
“equipped” with (i.e. all functions of type a -> ’b for some type ’b).

We can think of any functions a -> ’b as being a relationship between
the types ’a and ’b.

Suppose we also wanted to “transform” the type ’a into the type ’a
list.

Question

How would this affect the function >a -> ’b? How do we perform the
transformation such that the relationship between ’a and ’b is preserved?

Hype for Types Monads November 11, 2024 3/1



From Types to Types

Consider the following transformation:

’a list
List . .map f

type ’a map_obj
fun map_arr f

where we

Hype for Types Monads November 11, 2024 4/1



From Types to Types

Consider the following transformation:

type ’a map_obj = ’a list
fun map_arr f List . .map f

where we

o take a type t and turn it into type t list

Hype for Types Monads November 11, 2024

4/1



From Types to Types

Consider the following transformation:

type ’a map_obj = ’a list
fun map_arr f List . .map f

where we
o take a type t and turn it into type t list

@ take a function £ : t -> u and turn it into a function
List.map £ : t list -> u list

Hype for Types Monads November 11, 2024

4/1



Visualizing Lists

t

. List.map £
s 1igp MR E
f \

list
> u

] - ) :E -
Hype for Types B




Visualizing Lists

A List.map £
t list ————u
£

list
u

Even though the types ’a and ’b are now different, the relationship
between them has been preserved by the transformation.

t >

Key ldea

Hype for Types Monads November 11, 2024

5/1



Mappables?

Why stop at lists? How would we define a transformation for any arbitrary
destination type?

Hype for Types Monads November 11, 2024 6/1



Mappables?

Why stop at lists? How would we define a transformation for any arbitrary
destination type?

Definition?
A mappable M is the data:
@ type ’a t

Hype for Types Monads

November 11, 2024 6/1



Mappables?

Why stop at lists? How would we define a transformation for any arbitrary
destination type?

Definition?
A mappable M is the data:
@ type ’a t

@ valuemap : (’a -> ’b) -> ’a t -> ’b t

Hype for Types Monads

November 11, 2024 6/1



Mappables?

Why stop at lists? How would we define a transformation for any arbitrary
destination type?

Definition?
A mappable M is the data:
@ type ’a t

@ valuemap : (’a -> ’b) -> ’a t -> ’b t

In other words:

signature MAPPABLE =

sig
type ’a t
val map : (’a -> ’b) -> ’a t -> ’b t
end
~ HypeforTypes | Monads

November 11, 2024 6/1



Which map?

Let’s go back to our list transformation.

=] & = E DA
Hype for Types Monads



Which map?

Let's go back to our list transformation.

There are countless functions we could have chosen for our transformation
that have type (’a -> ’b) -> ’a list -> ’b list:

Hype for Types Monads November 11, 2024 7/1



Which map?

Let's go back to our list transformation.

There are countless functions we could have chosen for our transformation
that have type (’a -> ’b) -> ’a list -> ’b list:

type ’a map_obj = ’a list

fun map_arrl f
fn _ => []
fun map_arr2 f =
fn 1 => List.map f (List.rev 1)
fun map_arr3 f =

fn [] => []

| _::xs => List.map f xs

Hype for Types Monads November 11, 2024 7/1



Not this map

If we want our transformation to maintain the relationship between the

types, then some of those suggestions, while having the right type, are
problematic.

Hype for Types Monads November 11, 2024 8/1



Not this map

If we want our transformation to maintain the relationship between the
types, then some of those suggestions, while having the right type, are

problematic.

We would want our transformation on functions to maintain the following:

Hype for Types Monads November 11, 2024 8/1



Not this map

If we want our transformation to maintain the relationship between the
types, then some of those suggestions, while having the right type, are

problematic.

We would want our transformation on functions to maintain the following:

@ The identity function id : ’a -> ’a is transformed into the
identity function id’> : ’a t -> ’a t for the new type

Hype for Types Monads November 11, 2024 8/1



Not this map

If we want our transformation to maintain the relationship between the
types, then some of those suggestions, while having the right type, are

problematic.

We would want our transformation on functions to maintain the following:

@ The identity function id : ’a -> ’a is transformed into the
identity function id’> : ’a t -> ’a t for the new type
e For any functionsf : ’a -> ’bandg : ’b -> ’c,

map (f o g) = (map f) o (map g)

Hype for Types Monads November 11, 2024 8/1



Mappables
Definition

A mappable M is the data:
@ type’a t

@ value map

(’a => °’b) => ’at -> b t

=] & = E DA
Hype for Types Monads




Mappables

Definition
A mappable M is the data:
o type’a t
@ valuemap : (’a -> ’b) ->’at > b t

@ upholds map id =5 ¢ — 75 ¢ id

Hype for Types Monads November 11, 2024 9/1



Mappables

Definition

A mappable M is the data:
o type’a t
@ valuemap : (a -> ’b) -> ’a t -> ’b t
@ upholds map id =5 ¢ — 75 ¢ id

@ upholds map f o map g =map (f o g)

Hype for Types Monads November 11, 2024 9/1



Mappables

Definition

A mappable M is the data:
o type’a t
@ valuemap : (a -> ’b) -> ’a t -> ’b t
@ upholds map id =5 ¢ — 75 ¢ id

@ upholds map f o map g =map (f o g)

In other words:

signature MAPPABLE =

sig
type ’a t
val map : (’a -> ’b) -> ’a t -> ’b t
(* invariants: ... *)

end

Hype for Types Monads November 11, 2024

9/1



Optimization: Loop Fusion!

If we have:

int [n] arr;

for (int i = 0; i < n; i++)
arr[i] = f(arrl[i]);

for (int i = 0; i < n; i++)
arr[i] = g(arr([il);

2Not just for lists - any data structure with a “sensible” notion of map works!

Hype for Types Monads November 11, 2024 10/1



Optimization: Loop Fusion!
If we have:
int [n] arr;

for (int i = 0; i < n; i++)
f(arr[i]);

arr[i]

for (int i = 0; i < n; i++)
arr [i] glarr[il);

then it must be equivalent to:2

for (int i = 0; i < n; i++)
arr[i] = g(f(arr[il));

2Not just for lists - any data structure with a “sensible” notion of map works!

Hype for Types Monads November 11, 2024 10/1



Some Example Mappables

Lists
Options
Trees
Streams

Functions int -> ’a

[} = =

Hype for Types Monads



Some Example Mappables

Lists
Options
Trees
Streams

Functions int -> ’a

i.e., (almost) anything polymorphic.

Conclusion
It's a useful abstraction! J

Hype for Types Monads November 11, 2024 11/1



Monads

Hype for Types Monads



Descent into partial madness

Partial functions return options

o = = £ DA
Hype for Types Monads



Descent into partial madness

Partial functions return options:
@ sqrt :

int -> int option

o = = £ DA
Hype for Types Monads



Descent into partial madness

Partial functions return options:
@ sgrt : int -> int option

@ div : (int * int) -> int option

Hype for Types Monads November 11, 2024 13/1



Descent into partial madness

Partial functions return options:
@ sqrt : int -> int option
@ div : (int * int) -> int option

@ head : ’a list -> ’a option

Hype for Types Monads November 11, 2024 13/1



Descent into partial madness

Partial functions return options:
@ sqrt : int -> int option
@ div : (int * int) -> int option
@ head : ’a list -> ’a option

@ tail : ’a list -> ’a list option

Hype for Types Monads November 11, 2024 13/1



Descent into partial madness

Partial functions return options:
@ sqrt : int -> int option
@ div : (int * int) -> int option
@ head : ’a list -> ’a option

@ tail : ’a list -> ’a list option

How would we write the partial version of tail_37

(* tail_3 : ’a list -> ’a list *)
fun tail_3 (_::_::_::L) =1L

Hype for Types Monads November 11, 2024 13/1



Composing partial functions

How would we write the partial version of tail_37

tail_3 : ’a list -> ’a list option

Hype for Types Monads November 11, 2024 14 /1



Composing partial functions

How would we write the partial version of tail_37

tail_3 : ’a list -> ’a list option

Partial madness!

fun tail_3 LO =
case tail LO of
NONE => NONE
| SOME L1 =>
(case tail L1 of
NONE => NONE
| SOME L2 => tail L2)

Hype for Types Monads November 11, 2024

14/1



Composing partial functions

How would we write the partial version of tail_37

tail_3 : ’a list -> ’a list option

Partial madness!

fun tail_3 LO =
case tail LO of
NONE => NONE
| SOME L1 =>
(case tail L1 of
NONE => NONE
| SOME L2 => tail L2)

What about tail_57

Hype for Types Monads November 11, 2024

14/1



Composing partial functions (again)
How would we write the partial version of tail_57

tail_5 : ’a list -> ’a list option

Hype for Types Monads November 11, 2024 15/1



Composing partial functions (again)
How would we write the partial version of tail_57

tail_5 : ’a list -> ’a list option
If only...

val tail_5 = tail o tail o tail o tail o tail
However, tail : ’a list -> ’a list option, so we can't compose
them like this.

Hype for Types Monads November 11, 2024 15/1



Composing partial functions (again)
How would we write the partial version of tail_57

tail_5 : ’a list -> ’a list option
If only...

val tail_5 = tail o tail o tail o tail o tail
However, tail : ’a list -> ’a list option, so we can't compose
them like this.

Let's consider another kind of compose:

o: (b ->"'’c)* (Pa->"’b) -> (Ca -> ’¢c)
<=<: (b -> ’c opt) * (’a > ’b opt) -> (a -> ’c opt)

Hype for Types Monads November 11, 2024 15/1



Composing partial functions (again)
How would we write the partial version of tail_57

tail_5 : ’a list -> ’a list option
If only...

val tail_5 = tail o tail o tail o tail o tail
However, tail : ’a list -> ’a list option, so we can't compose
them like this.

Let's consider another kind of compose:

o: (b ->"’¢c) * (a->"b) > (a-> ¢c)
<=<: (b -> ’c opt) * (’a > ’b opt) -> (a -> ’c opt)
Ta-dal!

val tail_5 =
tail <=< tail <=< tail <=< tail <=< tail

Hype for Types Monads November 11, 2024 15/1



More than composition

Take a look at these Option functions:
type ’a t = ’a option

Option.composePartial

val <=<

(b -> ’c t) * (’a -> b t) -> (’a -> ’c t)

Hype for Types Monads

November 11, 2024 16/1



More than composition
Take a look at these Option functions:

type ’a t = ’a option
Option.composePartial
val <=<

(’b -> ’c t) *x (Pa -> ’b t)
Option.map
val >>| ’a t x (’a -> ’b) -> b

-> (’a -> ’c t)

t

November 11, 2024

16/1



More than composition
Take a look at these Option functions:

type ’a t = ’a option
Option.composePartial
val <=<

b -> ’c t) *» (’a -> ’b t) -> (’a -> ’c t)
Option.map
val >>| : ’a t * (’a -> ’b) -> ’b t
Option.mapPartial

val >>= : ’a t * (’a -> ’b t) -> ’b t

Hype for Types Monads November 11, 2024 16/1



More than composition
Take a look at these Option functions:

type ’a t = ’a option
Option.composePartial
val <=<
b -> ’c t) *» (’a -> ’b t) -> (’a -> ’c t)
Option.map
val >>| : ’a t * (’a -> ’b) -> ’b t

Option.mapPartial

val >>= : ’a t * (a -> ’b t) -> ’b t
Option.join
val join : ’a t t -> ’a t

Hype for Types Monads November 11, 2024 16/1



More than composition
Take a look at these Option functions:

type ’a t = ’a option
Option.composePartial
val <=<
b -> ’c t) *» (’a -> ’b t) -> (’a -> ’c t)
Option.map
val >>| : ’a t * (’a -> ’b) -> ’b t

Option.mapPartial

val >>= : ’a t * (a -> ’b t) -> ’b t
Option.join

val join : ’a t t -> ’a t

Option.SOME

val return : ’a -> ’a t

Hype for Types Monads November 11, 2024 16/1



Programming with bind

fun sum_options (a : int option) (b : int option) =
a >>= fn a’ =>
b >>= fn b’ =>
SOME (a’ + b?)

Hype for Types Monads November 11, 2024 17/1



Programming with bind

fun sum_options (a : int option) (b

a >>= fn a’ =>
b >>= fn b’ =>
return (a’ + b’)

Hype for Types Monads

int option) =

November 11, 2024

17/1



Programming with bind

fun sum_options (a : int option) (b : int option) =
a >>= fn a’ =>
b >>| fn b’ =>
a’ + b’

Hype for Types Monads November 11, 2024 17/1



Programming with bind

fun sum_options (a

a >>= fn a’
b >>| fn b’
a) + b)

fun tail_5 LO

tail
tail
tail
tail
tail

Hype for Types Monads

LO
L1
L2
L3
L4

>>=
>>=
>>=
>>=

=>
=>

fn
fn
fn
fn

L1
L2
L3
L4

int option) (b

int option) =

November 11, 2024

17/1



Programming with bind

fun sum_options (a

a >>= fn a’
b >>| fn b’
a) + b)

fun tail_5 LO

tail
tail
tail
tail
tail

LO
L1
L2
L3
L4

>>=
>>=
>>=
>>=

fun tail_5 LO
tail LO >>=

Hype for Types Monads

=>
=>

fn
fn
fn
fn

L1
L2
L3
L4

int option) (b : int option) =

tail >>= tail >>= tail >>= tail

November 11, 2024

17/1



OCaml loves this!

open Option.Let_syntax

let sum_options (a : int option) (b
let%bind a’ = a in
let%map b’ = b in
aJ + b)

Hype for Types Monads

int option) =

November 11, 2024

18/1



OCaml loves this!

open Option.Let_syntax

let sum_options (a

let’%bind

a)

let%map b’

aJ + b)

let tail_5
let%bind
let%bind
let’bind
let%bind
tail L4

Hype for Types Monads

LO
L1
L2
L3
L4

= a in
b in

tail
= tail
= tail
= tail

int option) (b

LO
L1
L2
L3

in
in
in
in

int option)

November 11, 2024

18/1



More than just options: Or_error

open Or_error.Let_syntax

type ’a t = 0k of ’a | Error of Error.t

let divide (x : int) (y : int) : int Or_error.t =
if y =0
then Or_error.error_string "

else Or_error.return (x div y)

let _ : string Or_error.t =
let’%bind x = divide 10 3 in
let/%map y = divide x 0 in
string_of_int (x + y)

Hype for Types Monads November 11, 2024 19/1



More than just options: Deferred

open Async
type ’a t = ’a Deferred.t

let is_same (f1l : string) (f2 : string)
bool Deferred.t =
let%bind contentsl = Reader.file_contents f1 in
let%bind contents?2 Reader.file_contents f2 in
return (String.equal contentsl contents2)

Hype for Types Monads November 11, 2024 20/1



Useful pattern!

Key ldea J

Monads are a useful programming tool!

signature MONAD =

sig
type ’a t
val bind : ’a t * (’a -> ’b t) -> ’b t
val return : ’a -> ’a t

end

Hype for Types Monads November 11, 2024 21/1



Monads are like burritos

A monad is a special kind of a mappable. A mappable F takes
each type T and maps it to a new type FT. A burrito is like a
mappable: it takes a type, like meat or beans, and turns it into a
new type, like beef burrito or bean burrito.

Hype for Types Monads November 11, 2024 22/1



Monads are like burritos

A mappable must also be equipped with a map function that
lifts functions over the original type into functions over the new
type. For example, you can add chopped jalapefios or shredded
cheese to any type, like meat or beans; the lifted version of this
function adds chopped jalapefios or shredded cheese to the corre-
sponding burrito.

Hype for Types Monads November 11, 2024 23/1



Monads are like burritos

A monad must also possess a return function that takes a
regular value, such as a particular batch of meat, and turns it into
a burrito. The unit function for burritos is obviously a tortilla.

Hype for Types Monads November 11, 2024 24 /1



Monads are like burritos

Finally, a monad must have a bind function that takes a bur-
rito, tells you how to shuffle the ingredients, and turns it into a
new burrito. For example, given a burrito, you can unwrap the
tortilla, add cheese, and rewrap it.

Hype for Types Monads November 11, 2024 25/1



Monads are like burritos

The map, bind, and return functions must satisfy certain
laws. For example, if B is already a burrito, and not merely a
filling for a burrito, then B >>= return must be the same as B.
This means that if you have a burrito, unwrap the burrito, and
rewrap it in a new tortilla, its the same as the original burrito.

Hype for Types Monads November 11, 2024 26/1



