Homework 6
Infer Your Types

98-317: Hype for Types
Due: 28 Februrary 2018 at 6:30 PM

Introduction

This week we discussed type inference and how it differs from type checking and type synt-
hesis. We discovered that type inference naturally relies on the problem of unification, then
looked more closely at examples of unification. Finally, we went over an algorithm for per-
forming unification and discussed tips on how to use unification to perform type inference.
The lecture slides are linked on the course website, and it may be useful to refer back to
them.

This homework is divided into three parts: Required, Useful, and Fun. You will receive
credit for this homework if you turn in something (not necessarily something working) for
the “required” portion.

Code solutions to the problems in this assignment will be released next week.

Turning in the Homework Run the command
tar cf handin.tar Inference.sml ReverseInference.sml

inside your hw6 directory, then submit handin.tar to Autolab.



Lambda-++

In this assignment we will use a simple programming language with functions, sums, and
products, which we will call Lambda++. It differs from the language called Lambda++ in
last week’s homework in that it no longer requires (or even supports) type annotations. Here
is its syntax:

Type T = « type variable
T—T arrow type
T+T sum type
TXT product type

Expression e = =z variable
fnz=e lambda
ee application
#1e left projection
#2 e right projection
INL e left injection
INR e right injection

case e of INL z = e | INR x = e case analysis
We implement this syntax with the following SML datatypes:

datatype typ =
TypeVariable of int

| Arrow of typ * typ

| Plus of typ * typ

| Times of typ * typ

datatype exp =
Variable of string

| Lambda of string * exp

| Apply of exp * exp

| Tuple of exp * exp

| First of exp

| Second of exp

| Left of exp

| Right of exp

| Case of exp * (string * exp) * (string * exp)

Note that we use integers to represent type variables, while we use strings to represent
expression variables. This is pretty arbitrary and there’s nothing interesting going on here;
for example you can think of an SML value Arrow (TypeVariable 98, TypeVariable 317)
as representing a type of the form a — £.



Here are the rules defining the statics of Lambda++-:
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Required
Required Task In Inference.sml, implement the function
unify : typ * typ -> (int * typ) list

which performs unification. If the types t1 and t2 can be unified, then unify (t1, t2)
should evaluate to a list of variable mappings that, when applied (from left to right) to t1
and t2, result in the same type. If t1 and t2 can’t be unified, then unify (t1, t2) should
raise TypeError msg where msg is an error message.

We’ve provided a few helper functions:

e occurs : int -> typ -> bool checks whether a type variable appears anywhere in
a type. occurs a t returns whether or not the type variable a occurs in the type t.

e subst : (int * typ) * typ —-> t substitutes type variables in a type. subst ((a,
t), tt) replaces all occurrences of the type variable a in the type tt with the type t.
This function is uncurried to make it easy to use with foldl to apply a list of variable
mappings to a type.



Useful

Useful Task Also in Inference.sml, implement the function
infer : exp —> typ

which performs type inference. If the expression e can have a type per the statics rules of
Lambda++4-, then infer e should evaluate to the most general such type, up to renaming
of type variables. If e can not have a type, then infer e should raise TypeError with some
error message.

You can use the Top.infer to test your Inference.infer function. It parses a given
expression, calls your infer function, then prints out the inferred type (or the error message
if TypeError is raised). Here are a few examples:

$ sml -m sources.cm

[New bindings added.]

- Top.infer "fn x => x";

(a -> a)

val it = () : unit

- Top.infer "fn x => y";

Type error: unbound variable: y
val it = () : unit

- Top.infer "fn x => fn y => x";
(a > (b > a))

val it = () : unit

- Top.infer "fn x => fn y => (x, INL y)";
(@ > (@ > (a* (b+c))))

val it = () : unit

Hints:

e The TC and EC structures (short for “type context” and “expression context”) are
dictionary data structures which you may want to use. The interface for these dictio-
naries is provided at the end of this document.

e Review the last few lecture slides, where we provide tips on implementing type infe-
rence.

e You'll probably want to implement a recursive helper function which passes around at
least one dictionary.



Fun

Now that we’ve written a function from expressions to types, I wonder if we can write a
function from types to expressions? That would be like... reverse type inference?

It turns out “reverse type inference” is decidable (for the Lambda++ type system, at
least)Eﬂ. But it’s still pretty hard.

Fun Task In ReverselInference.sml implement the function
reverse_infer : typ -> exp option

If the type t is inhabited by a Lambda++ expression, then reverse_infer t should evaluate
to SOME e where e is an expression of type t. If t is not inhabited by any Lambda-++
expressions, then reverse_infer t should evaluate to NONE.

You can use Top.reverse_infer to test your ReverseInference.reverse_infer function.
Here are a few examples:

- Top.reverse_infer "a -> a";

fn a => a

val it = () : unit

- Top.reverse_infer "a -> b";

Uninhabited type.

val it = () : unit

- Top.reverse_infer "(a -> b) -> a -> b";

fn ¢ => fn d => (¢ d)

val it = () : unit

- Top.reverse_infer "(a + b -> ¢) -> (a -> ¢) * (b -> c)";
fne=> (fnf => (fn g => (e INL g) f), fn i => (fn k => (e INR k) i))
val it = () : unit

By the Curry-Howard correspondence, reverse type inference is more commonly referred to as automated
theorem proving
2T made up the term “reverse type inference”.



Appendix: Dictionary Interface

signature DICT =
sig

type key
type ’a dict

exception Absent

val empty : ’a dict
val singleton : key -> ’a -> ’a dict

val insert : ’a dict -> key -> ’a -> ’a dict

val remove : ’a dict -> key —-> ’a dict

val find : ’a dict -> key -> ’a option

val lookup : ’a dict -> key -> ’a

val union : ’a dict -> ’a dict -> (key * ’a x ’a -> ’a) -> ’a dict

val operate :
’a dict -> key -> (unit -> ’a) -> (’a -> ’a) -> ’a option * ’a * ’a dict
val insertMerge : ’a dict -> key -> ’a -> (’a -> ’a) -> ’a dict

val isEmpty : ’a dict -> bool
val member : ’a dict -> key -> bool
val size : ’a dict -> int

val tolist : ’a dict -> (key * ’a) list

val domain : ’a dict -> key list

val map : (a -> ’b) -> ’a dict -> ’b dict

val foldl : (key * ’a * ’b => ’b) -> ’b -> ’a dict -> ’b
val foldr : (key * ’a * ’b => ’b) -> ’b -> ’a dict -> ’b
val app : (key * ’a -> unit) -> ’a dict -> unit

end



