
Homework 7
Running Things

98-317: Hype for Types

Due: 13 March 2018 at 6:30 PM

1 Introduction

In lecture, we saw how a language is evaluated. Rules for dynamics define how one expression
is either a value or transitions to another. Given a specification for a dynamics, we may
complete an interpreter for a language.

This homework is divided into three parts: Required, Useful, and Fun. You will receive
credit for this homework if you turn in something (not necessarily something working) for
the “required” portion.

Code solutions to the problems in this assignment will be released next week.

Turning in the Homework Run the command

tar cf handin.tar dynamics.sml

inside your hw7 directory, then submit handin.tar to Autolab.

1

2 Lambda++

Remember Lambda++, from a few weeks ago? We recently “shared” the language specifi-
cation with the CMU 1 PoP group2 at PLunch 3, and they gave us some great constructive
feedback. 4

One of the comments was that despite having a robust type system, Lambda++ has no
meaningful way of being run. The Hype for Types staff was confused as to why Lambda++
should actually have any practical utility, but decided to give it a try anyway. As a refresher,
this is the syntax of Lambda++, with explicit type annotations elided.

Type τ ::= α type variable
τ → τ arrow type
τ + τ sum type
τ × τ product type

Expression e ::= x variable
fn x⇒ e lambda
e e application
〈e, e〉 pair
#1 e left projection
#2 e right projection
INL e left injection
INR e right injection
case e of INL x⇒ e | INR x⇒ e case analysis

The syntax representation in Standard ML is the same as last week. We’ll start where we
left off next week, with our type inference mechanism having inferred all the necessary types.
Throughout this implementation, you are free to assume that the type inference and
checker have passed.

2.1 Dynamics

Under intense pressure to bring Lambda++ up to professional scrutiny, the staff have written
some of the rules for the dynamics of the language. However, they need your help to finish
them. Their incomplete work is below.

1https://www.cmu.edu/
2http://www.cs.cmu.edu/Groups/pop/
3https://goo.gl/maps/L3bAxENYdTF2
4Hype for Types is not sponsored by or affiliated with the PoP group, except for our faculty advisor.

The story, all names, characters, and incidents portrayed in this course are fictitious. No identification with
actual persons (living or deceased), papers, projects, and languages is intended or should be inferred. No
person or entity associated with this course received payment or anything of value, or entered into any
agreement, in connection with the depiction of tobacco products. No animals were harmed in the making of
this assignment.

2

https://www.cmu.edu/
http://www.cs.cmu.edu/Groups/pop/
https://goo.gl/maps/L3bAxENYdTF2

fn x⇒ e val

e1 7−→ e′1
e1 e2 7−→ e′1 e2

/* TODO: vijay finish this */

e1 e2 7−→ e1 e
′
2

e2 val

(fn x⇒ e1) e2 7−→ [e2/x]e1

TODO: charles why

#1 〈e1, e2〉 7−→ e1

isn’t this
#2 〈e1, e2〉 7−→ e2

finished yet?

〈e1, e2〉 val

e val
INL e val

e val
INR e val

e 7−→ e′

INL e 7−→ INL e′
e 7−→ e′

INR e 7−→ INR e′

<!-- Jeanne could you please help with this one -->

case e of INL x1 ⇒ e1 | INR x2 ⇒ e2 7−→ case e′ of INL x1 ⇒ e1 | INR x2 ⇒ e2

case INL e of INL x1 ⇒ e1 | INR x2 ⇒ e2 7−→ [e/x1]e1

case (* wait chris *) of INL x1 ⇒ e1 | INR x2 ⇒ e2 7−→ (* what goes here *)

As you can see, the staff were in a real hurry and only left notes for each other to finish
the work. When cornered and interrogated about what work was remaining, they mentioned
the following:

• “Eager function application. Anything else would be a kludge.”

• “Um, the products are lazy.”

• “Oh yeah, obviously the cases are exactly like SML. I refuse to do it like Java.”

• “We’re not French5, so we evaluate left-to-right.’

Recall that eager semantics require that an operand be a value before it can be worked
with further. By contrast, lazy semantics allow an operand to be operated on even before it
is a value. In a lazy language, large chunks of unevaluated expressions can be manipulated
before actually being computed.

Looks like we’ll have to finish the dynamics for these slackers first.

3 Required

Required Task Complete the missing portions of the dynamics above. Use the completed
rules as a guide as to what should be written in each spot. Your solution should have one
full rule for each incomplete rule above, with all missing components filled in.

The resulting system must be deterministic. That is, there should never be any ambiguity
about which rule to apply.

Hint: it’s possible for some slots that they should actually be empty. Which ones?
5https://caml.inria.fr

3

https://caml.inria.fr

4 Useful

The submission deadline for the ACM SIGHYPE 2018 conference is coming up, and the
course staff wants to whip up a prototype they can demonstrate. They want the Lambda++
interpreter to have a fully functional dynamics so that we can finally run the language.

Useful Task In dynamics.sml, implement the function

eval : exp -> exp

which uses the given dynamics to evaluate its expression down to a value.

Hints:

• You may find it helpful to write a helper function step : exp -> exp which applies
just one of the rules at a time. Then, the evaluator needs only to repeatedly step until
you’re done.

• You need a way to distinguish between non-values and values. Perhaps a datatype
could serve this purpose?

• Remember that some of the constructs are lazy, and some are eager. You can’t recur-
sively evaluate every expression you see.

• We provide you a function that substitutes expressions for variables in other expres-
sions. It will be very useful.

• Watch out for shadowing and capture. If you substitute e′ for x in fn x⇒ e, we would
not expect instances of x within e to get substituted. Likewise, if you substitute x for y
in fn x⇒ y, we might end up with fn x⇒ x, which would be absurd. The provided
routine takes care of shadowing but not capture. During testing, we advise using new
variable names often to avoid capture. There’s a proper solution for capture, 6 but we
won’t be using it in this assignment.

• You can assume the typechecker succeeds, but if you have inexhaustive matches, feel
free to raise TypeError.

• Functions are values.

6Look up ”de Bruijn indices”

4

5 Fun

Upon arriving at SIGHYPE 2018, the authors are bombarded with Haskell enthusiasts who
want to try out Lambda++. One comments that the language is not sufficiently lazy, and
that they should adopt a Haskell-like call-by-need evaluation strategy. That is, the language
should not evaluate a term until it is necessary, but when it becomes necessary, it should be
evaluated at most once so that multiple references to that term do not waste time computing
it more than once.

Fun Task Adopt Lambda++ evaluation to this call-by-need strategy. One popular method
is saving partial computations as suspended computations (thunks), then when those thunks
are evaluated, replacing them with the result. This transformation only works in a purely
functional language with no side effects, of course. (Ironically, an efficient implementation
might use a mutable table to store these computations. That’s up to you!)

5

	Introduction
	Lambda++
	Dynamics

	Required
	Useful
	Fun

