Homework 2 Type Isomorphisms

98-317: Hype for Types

Due: 30 January 2018 at 6:30 PM

Introduction

This week we learned about type isomorphisms. In this homework, you will use Standard ML to write proofs of some type isomorphisms.

This homework is divided into three parts: Required, Useful, and Fun. You will receive full credit for this homework if you turn in something for the "required" portion.

Turning in the Homework: Submit your hw2.sml file to the "Homework 2" autolab assignment.

Representing Isomorphism Proofs as SML Values

You may have heard the phrase "types are theorems; programs are proofs". We're going to use that philosophy to have you turn in proofs which we can autograde.

Recall that two types τ_1 and τ_2 are isomorphic (which we write as $\tau_1 \cong \tau_2$) if there exist functions $f: \tau_1 \to \tau_2$ and $g: \tau_2 \to \tau_1$ such that $f \circ g = \mathrm{id}_{\tau_2}$ and $g \circ f = \mathrm{id}_{\tau_1}$ (where id_{τ} represents the identity function for type τ). In this spirit, we define the SML type

type ('a, 'b) isomorphic = ('a -> 'b) * ('b -> 'a)

with the intent that a value of type (τ_1, τ_2) isomorphic represents a proof of the theorem $\tau_1 \cong \tau_2$. It's worth noting that while SML's type system will automatically check that the functions have the correct type, it will *not* check that their compositions are identity functions – instead, our autograder will check this.

SML/NJ has product types and sum types built in. A type $\tau_1 \times \tau_2$ is represented as $\tau_1 * \tau_2$ and has values of the form (e_1, e_2) . A type $\tau_1 + \tau_2$ is represented as (τ_1, τ_2) either, and has values of the form INL e_1 and INR e_2^{1} .

We've also provided a type inhabited by no values, named void:²

datatype void = Void of void

In the following tasks you will be asked to prove isomorphisms of types by writing SML values.

Example Task Prove

 $\forall \alpha, \beta. \ \alpha * \beta \cong \beta * \alpha$

by implementing a value commutativity_of_product of type

Solution:

```
local
fun f (x, y) = (y, x)
fun g (y, x) = (x, y)
in
val commutativity_of_product
: ('a * 'b, 'b * 'a) isomorphic
= (f, g)
end
```

¹The either type constructor and INL and INR constructors are found in the Either module, which we have opened at the top of your code file.

 $^{^{2}}$ SML's syntax doesn't allow declaring a datatype with no constructors, so this recursive type is a hacky way to ensure that no values of this type can be created.

Required

Req Task 1 Prove

 $\forall \alpha, \beta. \ \alpha + \beta \cong \beta + \alpha$

by implementing a value <code>commutativity_of_sum</code> of type

(('a, 'b) either, ('b, 'a) either) isomorphic

Req Task 2 Prove

 $\forall \alpha. \ 1 \times \alpha \cong \alpha$

by implementing a value identity_of_product of type

(unit * 'a, 'a) isomorphic

Req Task 3 Prove

 $\forall \alpha. \ 0 + \alpha \cong \alpha$

by implementing a value identity_of_sum of type

((void, 'a) either, 'a) isomorphic

Useful

Useful Task 1 Prove

 $\forall \alpha, \beta, \gamma. \ (\alpha \times \beta) \times \gamma \cong \alpha \times (\beta \times \gamma)$

by implementing a value <code>associativity_of_product</code> of type

(('a * 'b) * 'c, 'a * ('b * 'c)) isomorphic

Useful Task 2 Prove

 $\forall \alpha, \beta, \gamma. \ (\alpha + \beta) + \gamma \cong \alpha + (\beta + \gamma)$

by implementing a value <code>associativity_of_sum</code> of type

((('a, 'b) either, 'c) either, ('a, ('b, 'c) either) either) isomorphic

Useful Task 3 Prove

 $\forall \alpha, \beta, \gamma. \ \alpha \times (\beta + \gamma) \cong (\alpha \times \beta) + (\alpha \times \gamma)$

by implementing a value distributivity of type

('a * ('b, 'c) either, ('a * 'b, 'a * 'c) either) isomorphic

Fun: Arrows as Exponents

We haven't yet talked about how arrow types fit into the algebraic interpretation of types. One way to think of them is as exponents, where $\tau_1 \to \tau_2$ corresponds to $\tau_2^{\tau_1}$.

Fun Task 1 Prove

 $\forall \alpha. \ \alpha^1 \cong \alpha$

by implementing a value one_exponent of type

(unit -> 'a, 'a) isomorphic

Fun Task 2 Prove

 $\forall \alpha. \ 1^{\alpha} \cong 1$

by implementing a value one_to_power of type

('a -> unit, unit) isomorphic

Fun Task 3 Prove

 $\forall \alpha. \ \alpha^{1+1} \cong \alpha \times \alpha$

by implementing a value two_exponent of type

((unit, unit) either -> 'a, 'a * 'a) isomorphic