
Homework 2

Type Isomorphisms

98-317: Hype for Types

Due: 30 January 2018 at 6:30 PM

Introduction

This week we learned about type isomorphisms. In this homework, you will use
Standard ML to write proofs of some type isomorphisms.

This homework is divided into three parts: Required, Useful, and Fun. You
will receive full credit for this homework if you turn in something for the “re-
quired” portion.

Turning in the Homework: Submit your hw2.sml file to the “Homework
2” autolab assignment.

1



Representing Isomorphism Proofs as SML Values

You may have heard the phrase “types are theorems; programs are proofs”.
We’re going to use that philosophy to have you turn in proofs which we can
autograde.

Recall that two types τ1 and τ2 are isomorphic (which we write as τ1 ∼= τ2)
if there exist functions f : τ1 → τ2 and g : τ2 → τ1 such that f ◦ g = idτ2 and
g◦f = idτ1 (where idτ represents the identity function for type τ). In this spirit,
we define the SML type

type (’a, ’b) isomorphic = (’a -> ’b) * (’b -> ’a)

with the intent that a value of type (τ1, τ2) isomorphic represents a proof of
the theorem τ1 ∼= τ2. It’s worth noting that while SML’s type system will
automatically check that the functions have the correct type, it will *not* check
that their compositions are identity functions – instead, our autograder will
check this.

SML/NJ has product types and sum types built in. A type τ1 × τ2 is rep-
resented as τ1 * τ2 and has values of the form (e1, e2). A type τ1 + τ2 is
represented as (τ1, τ2) either, and has values of the form INL e1 and INR

e2
1.

We’ve also provided a type inhabited by no values, named void:2

datatype void = Void of void

In the following tasks you will be asked to prove isomorphisms of types by
writing SML values.

Example Task Prove
∀α, β. α ∗ β ∼= β ∗ α

by implementing a value commutativity_of_product of type

(’a * ’b, ’b * ’a) isomorphic

Solution:

local

fun f (x, y) = (y, x)

fun g (y, x) = (x, y)

in

val commutativity_of_product

: (’a * ’b, ’b * ’a) isomorphic

= (f, g)

end

1The either type constructor and INL and INR constructors are found in the Either module,
which we have opened at the top of your code file.

2SML’s syntax doesn’t allow declaring a datatype with no constructors, so this recursive
type is a hacky way to ensure that no values of this type can be created.

2



Required

Req Task 1 Prove
∀α, β. α+ β ∼= β + α

by implementing a value commutativity_of_sum of type

((’a, ’b) either, (’b, ’a) either) isomorphic

Req Task 2 Prove
∀α. 1× α ∼= α

by implementing a value identity_of_product of type

(unit * ’a, ’a) isomorphic

Req Task 3 Prove
∀α. 0 + α ∼= α

by implementing a value identity_of_sum of type

((void, ’a) either, ’a) isomorphic

Useful

Useful Task 1 Prove

∀α, β, γ. (α× β)× γ ∼= α× (β × γ)

by implementing a value associativity_of_product of type

((’a * ’b) * ’c, ’a * (’b * ’c)) isomorphic

Useful Task 2 Prove

∀α, β, γ. (α+ β) + γ ∼= α+ (β + γ)

by implementing a value associativity_of_sum of type

(((’a, ’b) either, ’c) either, (’a, (’b, ’c) either) either) isomorphic

Useful Task 3 Prove

∀α, β, γ. α× (β + γ) ∼= (α× β) + (α× γ)

by implementing a value distributivity of type

(’a * (’b, ’c) either, (’a * ’b, ’a * ’c) either) isomorphic

3



Fun: Arrows as Exponents

We haven’t yet talked about how arrow types fit into the algebraic interpretation
of types. One way to think of them is as exponents, where τ1 → τ2 corresponds
to τ τ12 .

Fun Task 1 Prove
∀α. α1 ∼= α

by implementing a value one_exponent of type

(unit -> ’a, ’a) isomorphic

Fun Task 2 Prove
∀α. 1α ∼= 1

by implementing a value one_to_power of type

(’a -> unit, unit) isomorphic

Fun Task 3 Prove
∀α. α1+1 ∼= α× α

by implementing a value two_exponent of type

((unit, unit) either -> ’a, ’a * ’a) isomorphic

4


