
Homework 3

Types ∼= Theorems

98-317: Hype for Types

Due: 6 Februrary 2018 at 11:59 PM

1 Introduction

In class, we discussed the idea that we can use types to express logical propo-
sitions, and that creating a value of a particular type corresponds to proving a
proposition. In this homework, you will explore this idea further, writing some
functions in SML to prove various propositions in logic.

This homework is divided into four parts: Required, Useful, Fun, and Com-
pletely Unnecessary But Also Fun. You will receive credit for this homework if
you turn in something (not necessarily something working) for the “required”
portion.

Turning in the Homework You should submit any code files to Autolab
by running the Makefile (type the command make) in the hw3 directory and
submitting the resulting hw03.tar file to the Homework 3 assessment. There
is an autograder installed in Homework 3, but it is there only for your benefit:
we will not base your grade on its results.

You should turn in your written solutions in class.

1

2 Required

In this section, you’ll be translating some logical propositions into types, and
then writing proofs of those propositions by writing a value of that type. You
should write your solutions in Standard ML.

Example Write the proposition

(A ∧B → C)→ (A→ B → C)

as a type, and then write an expression of that type.

Solution
Type: (’a * ’b -> ’c) -> (’a -> ’b -> ’c)

Program: fn f => fn x => fn y => f (x, y)

LATEX Typesetting your solutions isn’t required, but if you want to type-
set your solutions in LATEX, here is how we typeset our solution:

\paragraph{Solution} \hfill

Type: \texttt{(’a * ’b -> ’c) -> (’a -> ’b -> ’c)}

Program: \texttt{fn f => fn x => fn y => f (x, y)}

Req Task 1 Write the proposition

A→ (B → B)

as a type, and then write an expression (proof) of that type.

Req Task 2 Write the proposition

A ∧ (A→ B)→ B

as a type, and then write an expression (proof) of that type.

Req Task 3 Write the proposition

(A ∨B → C)→ ((A→ C) ∧ (B → C))

as a type, and then write an expression (proof) of that type.

2

3 Useful

In class, we talked about how it’s impossible to define a function for the propo-
sition ¬¬A → A. This is because programs represent proofs in constructive
logic. In constructive logic, a proposition is true exactly when there is a proof
of that proposition. This is different from the logic we’re all used to, classical
logic, where any proposition that can be proven not false is also true.

Turns out, we can also write programs that correspond to proofs in classical
logic (where ¬¬A→ A holds) by adding a new language feature called a contin-
uation1. Continuations allow us to implement the main feature that separates
classical logic from constructive logic: proof by contradiction. In particular,
continuations allow us to implement two functions:

val assume : (’a not -> ’a) -> ’a

val contra : ’a not -> ’a -> ’b

The function assume derives A from assuming ¬A and proving a contra-
diction (A). The function contra allows you to prove anything (B) from a
contradiction (¬A and A).

These functions are specified in classical.sig and implemented in classical.sml.
Take a look at classical.sig and make sure you understand the types in there.

Among the other code files in your handout, there are two files called proofs.sig

and proofs.sml. The first describes a signature called PROOFS. Read it over
and make sure you understand the types in it.

Useful Task 1 Implement a structure in proofs.sml ascribing to the PROOFS

signature. The values in the structure can have any behavior you want, as long
as they have the correct type, with one exception: all functions must be total.
That is, the functions must terminate; they may not loop infinitely or raise
exceptions. You may assume contra and assume from Classical are total
functions.2

Some Hints:

1. If you’re stuck on an implementation, think about how you would write a
proof of the equivalent proposition. This may help guide how your write
your code.

2. Make liberal use of contra and assume from Classical.

3. You can use earlier values in your structure to implement later ones. You
can also rearrange values in your structure. Use both of these facts to
your advantage.

1These are not the continuations you learned in 15-150, but they are the continuations
taught in 15-312.

2Even though a quick glance at the types should tell you that they are definitely not. A
more precise way to say this would be: you cannot create your own infinite loops or raised
exceptions. Only those created by contra and assume from Classical are allowed.

3

4 Fun

Fun Task 1 Some of the values in this signature can be implemented without
contra and assume. They correspond to propositions that are also true in
constructive logic. Conversely, others cannot be implemented without contra

and assume. They correspond to propositions that are true in classical logic,
but not in constructive logic. They are:

val law_ex_mid : unit -> (’a, ’a not) or

val demorgan_cong : ((’a * ’b) not, (’a not, ’b not) or) iff

val dne : ’a not not -> ’a

val contrapos : (’a -> ’b,’b not -> ’a not) iff

val neg_over_iff : ((’a,’b) iff not,(’a not,’b) iff) iff

However, it is possible to prove in constructive logic that they are not false.
Therefore, the following alternative version of these functions can be written
without contra and assume:

val cons_law_ex_mid : (unit -> (’a, ’a not) or) not not

val cons_demorgan_cong : (((’a * ’b) not, (’a not, ’b not) or) iff) not not

val cons_dne : (’a not not -> ’a) not not

val cons_contrapos : ((’a -> ’b,’b not -> ’a not) iff) not not

val cons_neg_over_iff : (((’a,’b) iff not,(’a not,’b) iff) iff) not not

Implement these values at the bottom of your Proofs structure.

4

5 Completely Unnecessary but Also Fun

Unnecessary Task 1 In classical.sml, implement a second structure ClassicalExn,
with the following type definition for ’a not:

type ’a not = ’a -> exn

Technically, your functions can have any behavior you want, but to make it
more interesting, you should imitate the behavior implemented in the Classical
signature. That is, what we really want you to do is implement the first-class
continuations of SML/NJ using exceptions. A good explanation of what con-
tinuations are can be found here:

http://www.cs.cornell.edu/courses/cs312/2006sp/lectures/lec22-23.

html.

The continuation type is interesting by itself, but sadly we won’t get to it in
this class.

5

http://www.cs.cornell.edu/courses/cs312/2006sp/lectures/lec22-23.html
http://www.cs.cornell.edu/courses/cs312/2006sp/lectures/lec22-23.html

	Introduction
	Required
	Useful
	Fun
	Completely Unnecessary but Also Fun

