Lambda Calculus

It turns out abstraction is pretty powerful

Lambda Calculus

It turns out abstraction is pretty powerful

What is Abstraction?

What is Abstraction?

Huh? What is it?

What is Abstraction?

What on earth is abstraction?

What is Abstraction?

Anyone else wondering what abstraction is?

Example of Abstraction

- "I repeatedly put one of my feet in front of the other until I reached WEH 5421"
- "I repeatedly put one of my feet in front of the other until I reached Fuku Tea"
- "I repeatedly put one of my feet in front of the other until I reached Canada"

Example of Abstraction

- "I repeatedly put one of my feet in front of the other until I reached WEH 5421"
- "I repeatedly put one of my feet in front of the other until I reached Fuku Tea"
- "I repeatedly put one of my feet in front of the other until I reached Canada"

Example of Abstraction

An abstraction: adding a hole which can be filled in
"I repeatedly put one of my feet in front of the other until I reached

Let's name this abstraction "I walked to"

Example of Abstraction

Applying the abstraction: filling in the hole

- "I walked to WEH 5421"
- "I walked to Fuku Tea"
- "I walked to Canada"

So then what is an abstraction?

- Something with holes in it which can be filled in later.
- Filling in the holes is called applying the abstraction.

When is an abstraction useful?

When it expresses a concept
that is general enough
for there to be many occasions
to apply
the abstraction

Lambda Calculus

A formalization of abstractions and applications

Representing Abstraction

- Is the "hole" representation sufficiently precise?
- No; example:

What should be the result of applying this abstraction to "functions"?

- "functions are functions"?
- "functions are \square "?
- " \square are functions"?
- " \square are \square "?

Representing Abstraction

- Solution: to make an abstraction,
- Replace the hole(s) an abstraction refers to with a variable
- Say which variable the abstraction refers to
- Let's also use some arbitrary particular symbol to indicate that we're making an abstraction, just to make parsing easier.

$$
\text { " } \square \text { are } \square "
$$

Representing Application

- Is the "putting the abstraction to the left of the thing we're applying it to" representation sufficiently precise?
- Ye
- Is that all we need to formalize about this calculus?
- We want these expressions to be "equal" in some sense:
($(\lambda x$. (λy. "x are y ")) functions) values \equiv "functions are values"
So we still need to formalize this notion of "equality"

Specifying What We Want to be "Equal"

- There are a lot of subtly different ways to do this
- I'm going to do what I consider the most satisfying approach, from a PL theory perspective:
- Defining a small-step dynamics for lambda calculus, and expressing equality in terms of it
- I'll actually discuss a few different ways to define the dynamics

The Core of the Dynamics

There are a few rules that people find so interesting that there are names for them:

$$
\begin{gathered}
\overline{\lambda x . e \rightarrow \lambda y \cdot[y / x] e}^{\alpha} \\
{\overline{\left(\lambda x . e_{1}\right) e_{2} \rightarrow\left[e_{2} / x\right] e_{1}}}^{\beta} \\
\overline{\lambda x . e x \rightarrow e}^{\eta}
\end{gathered}
$$

The Core of the Dynamics

I don't find α or η particularly interesting

$$
\begin{gathered}
\overline{\lambda x . e \rightarrow \lambda y \cdot[y / x] e} \\
\overline{\left(\lambda x \cdot e_{1}\right) e_{2} \rightarrow\left[e_{2} / x\right] e_{1}} \beta \\
\frac{\alpha}{\lambda x . e x \rightarrow e}
\end{gathered}
$$

Completing the Dynamics: Lazy, Deterministic

$$
\overline{\left(\lambda x . e_{1}\right) e_{2} \rightarrow\left[e_{2} / x\right] e_{1}} \beta
$$

Consider evaluating this expression if we only have the β rule:

$$
((\lambda x .(\lambda y . \text { "x are } y ")) \text { functions) values }
$$

Problem: this expression can't step because the expression in the function position isn't a lambda

Completing the Dynamics: Lazy, Deterministic

$$
\overline{\left(\lambda x . e_{1}\right) e_{2} \rightarrow\left[e_{2} / x\right] e_{1}} \beta
$$

Solution:

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

Completing the Dynamics: Lazy, Deterministic

$$
\overline{\left(\lambda x . e_{1}\right) e_{2} \rightarrow\left[e_{2} / x\right] e_{1}} \beta
$$

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

Completing the Dynamics: More Traditional

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

$$
\overline{\left(\lambda x . e_{1}\right) e_{2} \rightarrow\left[e_{2} / x\right] e_{1}} \beta
$$

$$
\frac{e_{2} \rightarrow e_{2}^{\prime}}{e_{1} e_{2} \rightarrow e_{1} e_{2}^{\prime}}
$$

$$
\overline{\lambda x . e x \rightarrow e}^{\eta}
$$

$$
\frac{e \rightarrow e^{\prime}}{\lambda x . e \rightarrow \lambda x \cdot e^{\prime}}
$$

Defining Equivalence using Dynamics

$$
\begin{gathered}
\frac{e_{1} \rightarrow e_{2}}{e_{1} \equiv e_{2}} \\
\frac{e_{1} \equiv e_{2}}{e_{2} \equiv e_{1}} \frac{e_{1} \equiv e_{2} \quad e_{2} \equiv e_{3}}{e_{1} \equiv e_{3}}
\end{gathered}
$$

Definability

Lambda calculus supports every feature you've seen in programming languages

Definability

- Features of Lambda++ which we'll express in lambda calculus:
- Tuples
- Sums
- Fixed points (what?)
- The key to defining data structures in lambda calculus:

Asking how those data structures are used
A lot of the time it's just a matter of continuation-passing style and currying

Definability: Tuples

How is a tuple used?

$$
\text { let }(x, y)=e_{1} \text { in } e_{2}
$$

So we need the tuple "usage" form to fill in the holes in e_{2} with the elements of the tuple
So this will appear somewhere in the "usage" form for tuples:

$$
\lambda x . \lambda y . e_{2}
$$

And it'll need to get applied to the elements of the tuple

Definability: Tuples

Definability: Tuples

$$
\left(e_{1}, e_{2}\right) \triangleq \lambda f . f e_{1} e_{2}
$$

Definability: Tuples

$$
\begin{array}{r}
\left(e_{1}, e_{2}\right) \triangleq \lambda f \cdot f e_{1} e_{2} \\
\text { let }(x, y)=e_{1} \text { in } e_{2} \triangleq e_{1}\left(\lambda x \cdot \lambda y \cdot e_{2}\right)
\end{array}
$$

Definability: Tuples

$$
\begin{aligned}
\left(e_{1}, e_{2}\right) & \triangleq \lambda f \cdot f e_{1} e_{2} \\
\text { let } \quad(x, y)=e_{1} \text { in } e_{2} & \triangleq e_{1}\left(\lambda x \cdot \lambda y \cdot e_{2}\right) \\
\# 1 e & \triangleq e(\lambda x \cdot \lambda y \cdot x)
\end{aligned}
$$

Definability: Tuples

$$
\begin{array}{r}
\left(e_{1}, e_{2}\right) \triangleq \lambda f \cdot f e_{1} e_{2} \\
\text { let } \quad(x, y)=e_{1} \text { in } e_{2} \triangleq e_{1}\left(\lambda x \cdot \lambda y \cdot e_{2}\right) \\
\# 1 e \triangleq e(\lambda x \cdot \lambda y \cdot x) \\
\# 2 e \triangleq e(\lambda x \cdot \lambda y \cdot y)
\end{array}
$$

Definability: Sums

How is a sum injection used?
case e of

So we need the sum "usage" form to select one of the branches and fill in the corresponding hole
So these will appear somewhere in the usage form, and one of them will need to be applied:

$$
\lambda x_{1} \cdot e_{1} \quad \lambda x_{2} \cdot e_{2}
$$

Definability: Sums

Definability: Sums
$\operatorname{INL} e \triangleq \lambda k_{1} \cdot \lambda k_{2} . k_{1} e$

Definability: Sums

$\operatorname{INL} e \triangleq \lambda k_{1} \cdot \lambda k_{2} \cdot k_{1} e$
$\operatorname{INR} e \triangleq \lambda k_{1} \cdot \lambda k_{2} \cdot k_{2} e$

Definability: Sums

INL $e \triangleq \lambda k_{1} \cdot \lambda k_{2} \cdot k_{1} e$
$\operatorname{INR} e \triangleq \lambda k_{1} \cdot \lambda k_{2} \cdot k_{2} e$
case e of $\operatorname{INL} x_{1} \Rightarrow e_{1} \mid \operatorname{INR} x_{2} \Rightarrow e_{2} \triangleq e\left(\lambda x_{1} \cdot e_{1}\right)\left(\lambda x_{2} \cdot e_{2}\right)$

Definability: Fixed Points

First of all, what is a fixed point?

$$
\operatorname{fix} x \text { is } e \rightarrow[(\operatorname{fix} x \text { is } e) / x] e
$$

For example:
fix fact is

$$
\begin{aligned}
\mathrm{fn} 0 & \Rightarrow 1 \\
\mid \mathrm{n} & \Rightarrow \mathrm{n} * \text { fact }(\mathrm{n}-1)
\end{aligned}
$$

Definability: Fixed Points

fix x is e
 So we'll give
 λx.e

to whatever we use to achieve fixed points. Let's call it Y .

$$
Y(\lambda x . e) \equiv(\lambda x . e)(Y(\lambda x . e))
$$

Definability: Fixed Points

$$
Y(F) \equiv F(Y(F))
$$

Claim: If we let

$$
Y(F)=(\lambda x . F(x x))(\lambda x . F(x x))
$$

then this equivalence will hold.

Definability: Fixed Points

Goal: $Y(F) \equiv F(Y(F))$

$$
Y(F)=(\lambda x \cdot F(x x))(\lambda x \cdot F(x x))
$$

Definability: Fixed Points

Goal: $Y(F) \equiv F(Y(F))$

$$
\left.\begin{array}{rl}
Y(F) & =(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)) \\
& \rightarrow F(\underbrace{(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)}_{Y(F)})
\end{array}\right)
$$

Definability: Fixed Points

Goal: $Y(F) \equiv F(Y(F))$

$$
\begin{aligned}
Y(F) & =(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)) \\
& \rightarrow F((\lambda x \cdot F(x x))(\lambda x \cdot F(x x))) \\
& =F(Y(F))
\end{aligned}
$$

Definability: Fixed Points

Goal: $Y(F) \equiv F(Y(F))$

$$
Y(F)=(\lambda x \cdot F(x x))(\lambda x \cdot F(x x))
$$

Definability: Fixed Points

Goal: $Y(F) \equiv F(Y(F))$

$$
\begin{aligned}
Y(F) & =(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)) \\
Y & =\lambda F \cdot(\lambda x \cdot F(x x))(\lambda x \cdot F(x x))
\end{aligned}
$$

Definability: Fixed Points

$$
\begin{aligned}
\text { fix } x \text { is } e & \triangleq Y(\lambda x . e) \\
\text { where } Y & =\lambda F .(\lambda x . F(x x))(\lambda x . F(x x))
\end{aligned}
$$

