
Lambda Calculus
It turns out abstraction is pretty powerful



Lambda Calculus
It turns out abstraction is pretty powerful



What is Abstraction?



What is Abstraction?
Huh? What is it?



What is Abstraction?
What on earth is abstraction?



What is Abstraction?
Anyone else wondering what abstraction is?



Example of Abstraction

• “I repeatedly put one of my feet in front of the other until I reached 
WEH 5421”

• “I repeatedly put one of my feet in front of the other until I reached 
Fuku Tea”

• “I repeatedly put one of my feet in front of the other until I reached 
Canada”



Example of Abstraction

• “I repeatedly put one of my feet in front of the other until I reached 
WEH 5421”

• “I repeatedly put one of my feet in front of the other until I reached 
Fuku Tea”

• “I repeatedly put one of my feet in front of the other until I reached 
Canada”



Example of Abstraction

An abstraction: adding a hole which can be filled in

“I repeatedly put one of my feet in front of the other until I reached 
WEH 5421”

Let’s name this abstraction “I walked to”



Example of Abstraction

Applying the abstraction: filling in the hole

• “I walked to WEH 5421”

• “I walked to Fuku Tea”

• “I walked to Canada”



So then what is an abstraction?

• Something with holes in it which can be filled in later.

• Filling in the holes is called applying the abstraction.



When is an abstraction useful?

When it expresses a concept

that is general enough

for there to be many occasions

to apply

the abstraction



Lambda Calculus
A formalization of abstractions and applications



Representing Abstraction

• Is the “hole” representation sufficiently precise?

• No; example:

“functions are values”

What should be the result of applying this abstraction to “functions”?
• “functions are functions”?

• “functions are functions”?

• “functions are functions”?

• “functions are functions”?



Representing Abstraction

• Solution: to make an abstraction,
• Replace the hole(s) an abstraction refers to with a variable

• Say which variable the abstraction refers to

• Let’s also use some arbitrary particular symbol to indicate that we’re 
making an abstraction, just to make parsing easier.

λx. (λy. “x are y”)



Representing Application

• Is the “putting the abstraction to the left of the thing we’re applying it 
to” representation sufficiently precise?

• Ye

• Is that all we need to formalize about this calculus?

• We want these expressions to be “equal” in some sense:

((λx. (λy. “x are y”)) functions) values ≡ “functions are values”

So we still need to formalize this notion of “equality”



Specifying What We Want to be “Equal”

• There are a lot of subtly different ways to do this

• I’m going to do what I consider the most satisfying approach, from a 
PL theory perspective:

• Defining a small-step dynamics for lambda calculus, and expressing 
equality in terms of it
• I’ll actually discuss a few different ways to define the dynamics



The Core of the Dynamics

There are a few rules that people find so interesting that there are 
names for them:



The Core of the Dynamics

I don’t find α or η particularly interesting



Completing the Dynamics: Lazy, Deterministic

Consider evaluating this expression if we only have the β rule:

((λx. (λy. “x are y”)) functions) values

Problem: this expression can’t step because the expression in the 
function position isn’t a lambda



Completing the Dynamics: Lazy, Deterministic

Solution:



Completing the Dynamics: Lazy, Deterministic



Completing the Dynamics: More Traditional



Defining Equivalence using Dynamics



Definability
Lambda calculus supports every feature you’ve seen in programming languages



Definability

• Features of Lambda++ which we’ll express in lambda calculus:
• Tuples

• Sums

• Fixed points (what?)

• The key to defining data structures in lambda calculus:
Asking how those data structures are used

A lot of the time it’s just a matter of continuation-passing style and currying



Definability: Tuples

How is a tuple used?

So we need the tuple “usage” form to fill in the holes in e2 with the 
elements of the tuple

So this will appear somewhere in the “usage” form for tuples:

And it’ll need to get applied to the elements of the tuple



Definability: Tuples



Definability: Tuples



Definability: Tuples



Definability: Tuples



Definability: Tuples



Definability: Sums

How is a sum injection used?

So we need the sum “usage” form to select one of the branches and fill 
in the corresponding hole

So these will appear somewhere in the usage form, and one of them 
will need to be applied:



Definability: Sums



Definability: Sums



Definability: Sums



Definability: Sums



Definability: Fixed Points

First of all, what is a fixed point?

For example:
fix fact is

fn 0 => 1
| n => n * fact (n – 1)



Definability: Fixed Points

So we’ll give

to whatever we use to achieve fixed points. Let’s call it Y.

So we want



Definability: Fixed Points

Claim: If we let

then this equivalence will hold.



Definability: Fixed Points

Goal:



Definability: Fixed Points

Goal:

Y(F)



Definability: Fixed Points

Goal:



Definability: Fixed Points

Goal:



Definability: Fixed Points

Goal:



Definability: Fixed Points


