Hype for Types

Logistics

e This is a Pass/Fail class

e Attendance is mandatory (StuCo's rule, not ours): if you miss more than 2
classes you fail

e There will be homeworks. They have very short mandatory portions and
very long optional portions. They are graded for completion, not
correctness. Homework is 50% of grade.

e There is a midterm and a final, in class. 25% each of grade.

e If you come to class and do the work, you should expect to pass :)

Course Website: hvpelortvpes.eithub.io

http://hypefortypes.github.io

Syllabus/Schedule

"This course aims to go over fun and weird results in type theory that you might
otherwise have to read complicated academic papers to understand, as well as to
provide a foundation to help understand these fun results."

Basic Layout:

- Some classes will be more foundation

- Some classes will be more fun and weird

- "Weird" and "fun" are dependent on your level of experience and your
interests. If you've seen a lot of this stuff already, it might not be too weird to
you.

Get Hype

Question: What are types?

Judgments

A judgment is an assertion about a property or relationship.
e [Examples:

A true (proposition A is true)

e — v (expression ¢ evaluates to value v)
e val (expression e is a value)

e:T (expression ¢ has type 1)

Types are judgments about expressions

e : int (if e evaluates to a value, that value will be an integer)

e : int — int (if ¢ evaluates to a value, that value will be a function®
which can only be applied to integers and only return
integers)

e Voa.o (For all types ¢, e has type ©)

1 functions are values

Inference Rules

An inference rule consists of a set of judgments above the line, which are known
as premises, and a single judgment below the line, known as the conclusion.

If an inference rule does not have any premises, it's an axiom.

e1 : int eo . int ey val eo val
e1 +es @ int (e1,e2) val

This most important inference rule

Az :7)eval

Functions are values :)

Inductive Definitions

COMPILERS
Expectation

Hi welcome

here are the intricacies
of x86 assembly and how
binaries should be
formatted to link with
other binaries

Reality

Inductive Definitions

An inductive definition is a set of inference rules that completely describes a
judgment.

This is how we define what expressions have a particular type.

A simple language

exp

type

€1 + €2
Az:T)e
61(62)

int
|t1 — 19

(decimal number)
(variable)
(addition)
(function)
(application)

(integer)
(function from % to t3)

Types? Types? Types?

e1:t1 — 1o €91

€1

:1nt e9:1nt

n :1int e1(e9) @ tg

But what about A (z : 7)e?

Premise: "Assuming x : 71 thene : 75"
Conclusion: A(z:7)e: 7 — 7o

How to write premise?

e] + €9 :1nt

Context is for Kings

We keep track of a context which tells us the type of all variables in scope.

We can use all the types in this context when checking the type of an expression.

A context I is either empty: -

or some set of variables with types: x : 7,y : T, elc.

To write our premise: I', x : 74 F e : 1

Final Rules

['Fn:int

I'Fey:int I'kFey:int
['Fey1+ey:int

I'Fep:ty =t I'Feo:ty

["Feq(eg) : to

x:myFe:m
Mz :T)e:m —=m

