Hype for Types

Lecture 1: Notation, notation, notation

Logistics

- This is a Pass/Fail class
- Attendance is mandatory (StuCo's rule, not ours): if you miss more than 2 classes you fail
- There will be homeworks. They have very short mandatory portions and very long optional portions. They are graded for completion, not correctness. Homework is 50% of grade.
- There is a midterm and a final, in class. 25% each of grade.
- If you come to class and do the work, you should expect to pass :)

Course Website: <u>hypefortypes.github.io</u>

Syllabus/Schedule

"This course aims to go over <u>fun and weird results</u> in type theory that you might otherwise have to read complicated academic papers to understand, as well as to provide a <u>foundation</u> to help understand these fun results."

Basic Layout:

- Some classes will be more foundation
- Some classes will be more fun and weird
- "Weird" and "fun" are dependent on your level of experience and your interests. If you've seen a lot of this stuff already, it might not be too weird to you.

Question: What are types?

A judgment is an assertion about a property or relationship.

• Examples:

A true	(proposition A is true)
$e \hookrightarrow v$	(expression e evaluates to value v)
e val	(expression <i>e</i> is a value)
e: au	(expression e has type τ)

Types are judgments about expressions

e : int (if *e* evaluates to a value, that value will be an integer)

 $e: \texttt{int} \to \texttt{int}$ (if e evaluates to a value, that value will be a function¹ which can only be applied to integers and only return integers)

 $e: \forall \alpha. \alpha$ (For all types *t*, *e* has type *t*)

1 functions are values

An inference rule consists of a set of judgments above the line, which are known as premises, and a single judgment below the line, known as the conclusion.

If an inference rule does not have any premises, it's an **axiom**.

$$e_1: \texttt{int}$$
 $e_2: \texttt{int}$ $e_1 ext{ val}$ $e_2 ext{ val}$ $e_2 ext{ val}$ $(e_1, e_2) ext{ val}$

This most important inference rule

$\lambda\left(x:\tau\right)e \; \mathsf{val}$

Functions are values :)

Inductive Definitions

COMPILERS

Expectation

here are the intricacies of x86 assembly and how binaries should be formatted to link with other binaries

Reality

Inductive Definitions

An inductive definition is a set of inference rules that completely describes a judgment.

This is how we define what expressions have a particular type.

A simple language

type ::= int (integer) $| t_1 \rightarrow t_2$ (function from t_1 to t_2)

Types? Types? Types?

$$\frac{e_1:t_1 \to t_2 \quad e_2:t_1}{e_1(e_2):t_2} \quad \frac{e_1: \texttt{int} \quad e_2:\texttt{int}}{e_1 + e_2:\texttt{int}}$$

But what about $\lambda(x : \tau) e$?

Premise: "Assuming $x : \tau_1$ then $e : \tau_2$ " Conclusion: $\lambda(x : \tau_1) e : \tau_1 \to \tau_2$

How to write premise?

Context is for Kings

We keep track of a **context** which tells us the type of all variables in scope.

We can use all the types in this context when checking the type of an expression.

A context Γ is either empty: \cdot

or some set of variables with types: $x : \tau_1, y : \tau_2$, etc.

To write our premise: $\Gamma, x: \tau_1 \vdash e: \tau_2$

Final Rules

$\overline{\Gamma \vdash \overline{n} : \texttt{int}}$

$$\frac{\Gamma \vdash e_1: \texttt{int} \quad \Gamma \vdash e_2: \texttt{int}}{\Gamma \vdash e_1 + e_2: \texttt{int}}$$

$$\frac{\Gamma \vdash e_1 : t_1 \to t_2 \quad \Gamma \vdash e_2 : t_1}{\Gamma \vdash e_1(e_2) : t_2}$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\lambda(x : \tau)e : \tau_1 \to \tau_2}$$