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1 Datatypes

Functional programming in SML allows for the creation of custom datatypes with
the datatype keyword. In these custom datatypes, we can combine two types in the
following ways:

datatype (’a, ’b) product = Pair of (’a * ’b)

datatype (’a, ’b) sum = Left of ’a | Right of ’b

The product datatype allows us to specify that we want to store both an α and
a β. So for exapmle,

Pair (7,true) : (int,bool) product

Pair ("hello", 42) : (string,int) product

Pair (42, "hello") : (int,string) product

It stores both an int and a bool.

Contrast this to the sum datatype, which allows us to store an α or a β. For
example,

Left 7 : (int,string) sum

Right "hello" : (int,string) sum

Left true : (bool, int) sum

Right 7 : (bool, int) sum

Right false : (int, bool) sum

Left 42 : (int, bool) sum

Here we are storing either one of two types.

Note: from here forwards, I will write the type (’a,’b) sum as α + β, and
(’a,’b) product as α× β
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2 Algebra

The fact that I’m using + and × to refer to these operations is a bit of a giveaway
for this section. It turns out we can meaningfully do algebra with types, and this
will be both useful and interesting. However, in order for many of the results to be
true, we need to weaken our notion of equality. Rather than wanting two types to be
exactly the same, we are interested in what information the type can contain. For
instance, it is intuitive that storing (5,(true, "hi")) and ((5,true), "hi") and
(true,(5,"hi")) all have the same information. So we would like these types to be
”equal”. In pursuit of this, we make the following definition.

Definition 2.1. We say two types α and β are isomorphic, written α ∼= β, when
there exist two functions f : α→ β and g : β → α such that for all a : α, b : β

• g(f(a)) = a

• f(g(b)) = b

These functions f and g allow us to convert between α and β, and the constraints
on their compositions mean we cannot lose information when we convert in either
direction. This means that the two types must carry exactly the same information,
exactly like we wanted!

Now, for a brief formality:
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Theorem 2.1. ∼= forms an equivalence relation on types

Proof. It suffices to show reflexivity, symmetry, and transitivity.

1: reflexivity (α ∼= α)
(fun id x = x) : α→ α
works for both f and g, and has the desired properties.

2: symmetry (α ∼= β implies β ∼= α)
Assume α ∼= β.
Then fix f : α→ β and g : β → α by the definition of ∼=.
Recognize that the same g and f still work for β ∼= α.

3: transitivity (α ∼= β and β ∼= γ implies α ∼= γ)
Assume α ∼= β and β ∼= γ.
Then fix the following functions by the definition of ∼=:

• f1 : α→ β

• g1 : β → α

• f2 : β → γ

• g2 : γ → β

Now consider f2 ◦ f1 : α→ γ and g1 ◦ g2 : γ → α.
(where, as usual, ◦ denotes function composition)
fix a : α and c : γ

(f2 ◦ f1)((g1 ◦ g2)(c)) = f2(f1(g1(g2(c)))) defn function composition

= f2(g2(c)) since for all b : β, f1(g1(b)) = b

= c since for all c : γ, f2(g2(c)) = c

(g1 ◦ g2)((f2 ◦ f1)(a)) = g1(g2(f2(f1(a)))) defn function composition

= g1(f1(a)) since for all b : β, g2(f2(b)) = b

= a since for all a : α, g1(f1(a)) = a

So f2 ◦ f1 and g1 ◦ g2 work, and ∼= is transitive.

Thus the theorem holds.
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Now that we have a notion of equality, let’s prove some fundamental algebraic
properties of these operations.

Proposition 2.1. α× β ∼= β × α

Proof. The following two functions work.
fun f (a,b) = (b,a) : α× β → β × α
fun g (b,a) = (a,b) : β × α→ α× β

Proposition 2.2. α + β ∼= β + α

Proof. The following two functions work.
fun f (Left a) = Right a

| f (Right b) => Left b

fun g (Left b) = Right b

| g (Right a) => Left a

(f : α + β → β + α and g : β + α→ α + β)

Proposition 2.3. α× (β + γ) ∼= (α× β) + (α× γ)

Proof. Again, the following functions work.
fun f (a,Left b) = Left (a,b)

| f (a,Right c) = Right (a,c)

fun g (Left (a,b)) = (a, Left b)

| g (Right (a,c)) = (a, Right c)

(f : α× (β + γ)→ (α× β) + (α× γ), and g : (α× β) + (α× γ)→ α× (β + γ))

Be sure you understand why the types of the above functions are correct, and
verify that no information is lost during the conversions (by checking the conditions
on the composition of f and g).

Exercise: Show that
α× (β × γ) ∼= (α× β)× γ
α + (β + γ) ∼= (α + β) + γ

Now that we know that multiplication and addition behave intuitively, we would
like types 0 and 1 which serve as identities for + and ×.

1 happens to be unit, a type with exactly one value, typically denoted in sml
by (). However, any type with exactly one value works, for instance datatype

meaningless = NIL and datatype halfabool = TRUE. The fact that 1∼= meaningless
∼= halfabool is clear.

Proposition 2.4. 1 works as a multiplicative identity. Namely, α × 1 ∼= α for all
α.

Proof. The following work.
fun f (a,()) = a

fun g a = (a,())
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We also have 0, which carries no information at all. sml has no built in empty
type, but we can create with the following trick:

datatype ZERO = Zero of ZERO

In order to create a value of type ZERO, we need to put a preexisting value of type
ZERO inside it. However, since there is no base case, (and sml only allows finitely
many type constructors) we have no way of doing so. Thus the type is empty, namely
there is no value of type ZERO.

Exercise: show that1

α + 0 ∼= α
α× 0 ∼= 0.

Now, we know that any type with exactly 1 value is isomorphic to 1, but it would
make a lot of sense to define 2 as 1 + 1. This turns out to be isomrophic to any type
with exactly two values. Recalling the implemenation of α+β as (’a, ’b) sum, we
can see those two values are Left () and Right (). However, we can pick any two
values we like. For instance, bool ∼= 2.

In fact, for any type with finitely many (say n) values, we can write is as
n ∼= 1 + 1 . . .+ 1︸ ︷︷ ︸

n times

Warning: Be careful not to confuse the value n : int and the type n.

Finally for a brief example, recall the ’a option type, which represents possible
failure of a computation by adding an extra value called NONE.

datatype ’a option = NONE | SOME of ’a

Notice that an ’a option is one of two things. The left thing, NONE has only one
value it can take, whereas the right thing, SOME of ’a can take any value in α. So
we can write α option ∼= 1 + α.
Exercise: prove it

This representation looks awfully like the polynomial 1 + x, which leads us into
the following section.

1note: this will be somewhat difficult, as SML has no good way of working with empty types. As
such, argue to yourself why it must be true using the idea of “0 has no values inside it”. Vigorous
hand waving is acceptable here.
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3 Polynomials

We know how to represent types with finitely many values now, but what about real
datastructures, which hold values of other types? Let’s consider the list, which you
may recall is implemented as follows.

datatype ’a list = nil | Cons of (’a * ’a list)

Now, intuitively, what is a list? A list is either nil, which stores no information,
or it is one element of type α or it is two elements of type α or it is three elemetns
. . . .

This goes to say that one way of writing a list which holds αs as the following
infinte sum: L(α) = 1 + α + α× α + α× α× α + . . .
If we abbreviate α×α in the obvious way, then we retrieve L(α) = 1+α+α2+α3+. . .
which looks very much like a polynomial in α.

But how do we actually define lists? Well, a list is either empty, 1, or it’s a
product of an α an another list. Namely: L(α) = 1 +αL(α). But then, we can solve
for L(α)!

L(α) =
1

1− α
This is utterly meaningless, since we don’t know what −α means, and we

CERTAINLY don’t know what a fractional type means. That said, upon remem-
bering calculus we start to see some glimmer of meaning, since (you may recall) the
taylor expansion of 1

1−x is 1 + x + x2 + x3 + . . ., the exact expression we intuited a
list to be!

In fact, we can apply this methodology to all sorts of datatypes! Recall trees,
defined as follows:

datatype ’a tree = Empty | Node of (’a tree * ’a * ’a tree)

Then a tree is either empty (1) or the product of two trees and an α, so
T (α) = 1 + αT 2. Solving in the same illegal fashion yields

T (α) =
1±
√

1− 4α

2α

Depending on your background in combinatorics, you may or may not recognize
this as the generating function for the Catalan numbers, which counts the number
of ways to make a binary tree . . .

In fact, taking the taylor expansion of this polynomial gives

T (α) = 1 + α + 2α2 + 5α3 + . . .

And one can verify that these coefficients are exactly the number of possible
binary trees. The α0 term is 1, since there is exactly one way to make an empty
tree. Similarly there is only one way to make a tree storing only one α, namely
Node(Empty, x, Empty). Similarly, there are two ways to make a tree hold two
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values of type α. One value goes at the root, and the other goes in either the left or
right child. Continuing the pattern, there are five ways to create a tree storing three
values, and in general, the coefficient of the αn term tells you how many ways there
are to store n many values in your tree.

Thinking about what this means as types, we can store every tree as either 1,
representing empty, or α representing the unique tree with one element, or 2 × α2,
representing a tuple of two αs and one “indicator”. The indicator is an element of 2,
and therefore has one of two values, representing each of the two possible tree shapes
we could be storing our αs in. Similarly, for any term Cnα

n, we store the n many
αs which represent the data in the tree, and we store an indicator coming from Cn

telling us which of the Cn many tree shapes we are in. (here Cn is the nth catalan
number).2

This brings us to the first major point of the talk:

polymorphic datatypes are just polynomials over our regular types!

Where by “regular” I mean the types which look like natural numbers n.3

Finally, when we have polynomials, and we’ve been doing a bunch of seemingly illegal
operations and getting meaningful results, we might try pushing our luck and taking
a derivative of some datatype’s polynomial and seeing what we get out . . . But first,
a diversion.4

2Clearly there is something meaningful here, despite the fact that manipulating these polynomi-
als in this way seems to be getting less and less legal. What does it mean to take the square root of
a type, as we did above? The programming implications of extending types to allow negative and
fractional types is a current area of research, on the very edge of our type theoretic knowledge! I
encourage you to read about it if you’re interested!

3It’s a fairly natural question to ask how polymorphic datatypes holding multiple types can be
represented. Intuitively, they are just polynomials with multiple variables, however formalizing this
concept involves quite a bit of algebra (really, we are defining a polynomial in β whose coefficients,
rather than being numbers, are polynomials in α). The topic is incredibly interesting, but beyond
the scope of this talk.

4These “illegal” operations are actually somewhat justified. There is a paper titled Objects
of Categories as Complex Numbers which explains exactly why we are able to legally use these
operations. It’s a surprisingly easy paper to understand, and I encourage you to read it if you’re
interested!
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4 One Hole Contexts

A lot of functional datastructures have constant time access near the outer layer
of that structure, for instance the head of a list or the root of a tree. However,
access at some random point inside the structure is typically linear in the number of
constructors required to get there. For instance, looking at some element of a list is
linear in the length of the list, and looking at some element of a tree is linear in the
depth of the tree.

From a purely practical perspective, it would be useful to have a datastructure
which stores similar information to that of a simpler datastructure, but which allows
constant time access to some internal “hole” where we can put new data. It would
also be useful to be able to move this “hole” around the datastructure quickly.

So, what exactly am I talking about? Consider the following representation of a
humble list:

[1,2,3, ,4,5]

We have a hole in the center, where we can add new information in constant
time. We might represent this datastructure as the following:

type ’a zipper = ’a list * ’a list

Here, we define an ’a zipper, which is the traditional term for a one-hole context
for lists. We use the left list to hold values to the left of the hole, and we use the
right list to store values to the right of the hole. For example, the above list would
be represented as follows:

([3,2,1],[4,5])

Notice we reverse the order of the left list so that we have constant time access
to the region next to the hole.

To briefly explain how one might use the datatype, consider the following func-
tions:

fun insert x (left,right) = (left,x::right)

fun moveLeft (l::left,right) = (left, l::right)

fun moveRight (left,r::right) = (r::right, left)

Notice the movement functions are partial. If you try to move left and there’s
nowhere to go, we raise an error.

Exercise: fix this by making moveLeft/moveRight return α zipper option.
Now, how might one create a similar one-hole context, but for trees? We want

some way to fill a hole inside a tree, and move that hole up, or to either child. There
is no obvious way to do so. Thankfully . . .
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5 Datatype Derivatives

The fact that I included the previous section has probably given away the punchline,
but let’s move towards it anyways.

Recall that polymorphic datatypes are polynomials, and recursive datatypes are
those where we can write an equivalence of polynomials. For instance

L(α) = 1 + αL(α)

which we can pretend is a regular polynomial, so we can factor and divide, leading
to:

L(α) =
1

1− α
Well, let’s push our luck. Depending on how well you remember calculus, the

following may require some revision (it did for me . . . )

dL

dα
=

1

(1− α)2
=

(
1

1− α

)2

= L2

So we took the derivative of lists, and wound up with precisely its associated
one-hole context! This is an extremely non-obvious result, which happens to be true
in general.5

So then to find the datatype for a one-hole context for trees, it suffices to take
the derivative of T (α) = 1 + αT 2! Don’t forget the product rule . . .

dT

dα
= α2T

dT

dα
+ T 2

So, rearranging

dT

dα
=

T 2

1− 2Tα
= T 2

(
1

1− 2Tα

)
= T 2L(2Tα)

So we can see that our derivative of trees is the product of two trees and a list
which contains a product of 2, a tree, and an α. Let’s unpack that.

Recall that 2 is isomorphic to any type with two values. We will choose
datatype TWO = LEFT | RIGHT for reasons which will soon become apparent.

5For an outline of the proof of this claim, recognize every polynomial looks like a (possibly
countably infinite) sum of terms which look like anα

n.
So we can first prove that the derivative of αn is its one-hole context, then we can prove that

constants a have derivatives corresponding to their one-hole context, then it remains to show that
adding and multiplying these terms preserves the fact that derivatives correspond to a one-hole
context.

This is a surprisingly simple proof to do, and I encourage you to give it a go!
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Let’s consider the following tree, with a hole in the marked position.

1

3

4

65

2

We would represent this tree with the following code:

datatype ’a tree = Empty | Node of (’a tree * ’a * ’alpha tree)

datatype TWO = LEFT | RIGHT

type ’a tree-with-hole =

’a tree * ’a tree * (TWO * ’alpha * ’a tree) list

val that tree : ’a tree-with-hole =

(Node(Empty,5,Empty), Node(Empty,6,Empty),

[(RIGHT, 3, Node(Empty,4,Empty)), (LEFT, 1, Node(Empty,2,Empty))])

So we store a 3 tuple, the first two elements are the children of the hole, in this
case the trees storing 5 and 6. The third element is a list representing the parents. So
the first element represents the immediate parent, It stores a direction (which was our
representation of 2), a tree, and a value of type α. These three things represent half
of a tree. The α represents the value stores in the node, the tree represents the other
child, and the direction represents which side the other child belongs on. That is why
our first parent stores RIGHT, 3, and Node(Empty,4,Empty). Node(Empty,4,Empty)
is the RIGHT child of 3. What is the left child? Well the left child is the hole, which
we’re storing outside the list!

Exercise:
Write a function toContext : ’a tree -> ’a tree-with-hole which creates a
context where the cursor is at the root.
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6 Application: Filesystem

Let’s try to solve the same problem, but on rose trees instead of binary trees. A
rose tree is a tree who has n many children, for any n. Consider the following
implementation:

datatype ’a rtree = RNode of ’a * ’a rtree list

Notice we exclude the empty tree. We can show a node has no children by making
its list of children empty. Also, for the purposes of this example, we will never deal
with a truly empty tree. So we can write

R(α) = αL(R(α))

Differentiating, we obtain (recalling the product and chain rules. . . )

R′(α) = L(R(α)) + αL′(R(α))R′(α)

Exercise: (challenge) Make sense of this

Intuitively, this should give us a structure which puts a hole somewhere inside of
a rose tree. Then we should be able to move this hole up to a parent node, or down
to any of the children. . .

If I simply add a suggestive diagram, then the structure we’ve created becomes
clear.

/

bin

home

chris

magic

books

videos

proofs

150

jeanne

vijay

boot

etc

usr

Where now, we have constant access to one particular region of a tree, and con-
stant time motion to move the hole to one of its children, or to its parent. Operations
which are starting to sound an awful lot like cd . . . We appear to have accidentally
made a filesystem. Who says theory is useless!
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