
Types in the “Real World”

April 24, 2018

So far in 98-317...

▶ What types are
▶ What lambda calculus is
▶ What category theory is

How does this help me?

▶ Many programming languages have types
▶ But some do not look like they do...
▶ Surely types are too boring for the average programmer to

care about?

Why types?

▶ It’s \the\year. Why can my booleans still take on the value
-98317?

▶ Why do I need a default switch case when I know there are
no more cases?

▶ How can a bug like Heartbleed still happen? (memcpy
bounds? Come on, man.)

Why types?

▶ Why did I train my CNN for 24 hours, only then to be greeted
with a TypeError?

▶ How can I stop typing if err != nil?
▶ Why can my enums only carry constants? Why wouldn’t I

just use a constant...

Why types?

▶ How do I write less code...
▶ and have it be more likely to be correct, more of the time?
▶ and learn things about programs that I would otherwise have

to figure out myself?

Why types?

Necessity
Because without types, the world is bug-ridden hell.

Convenience
Because without types, you waste so much of your time.

Innovation
Because without types, there are so many things you cannot do.

But first, all the obvious reasons...

▶ Better, earlier error reporting
▶ Fewer “wat” moments1
▶ Self-documentation
▶ Faster execution
▶ Better IDE support
▶ Encourages better software design
▶ Real patterns (monads, not

AbstractSingletonFactoryProxyBeans)

1https://www.destroyallsoftware.com/talks/wat

https://www.destroyallsoftware.com/talks/wat

Our goal

▶ “Just use a strongly, statically typed programming language.”
▶ That war is probably lost. (Was it ever fought?)
▶ Types are still everywhere!
▶ Novel applications of them are gaining prominence.

Today we will sample ~15 ways that types can make life easier in
the real world!

No inference rules.

Whether you use Python or Idris, types are central to software.

Our goal

▶ “Just use a strongly, statically typed programming language.”
▶ That war is probably lost. (Was it ever fought?)
▶ Types are still everywhere!
▶ Novel applications of them are gaining prominence.

Today we will sample ~15 ways that types can make life easier in
the real world!

No inference rules.

Whether you use Python or Idris, types are central to software.

Duck typing

If it walks like a duck and it quacks like a duck, then it
must be a duck.

Duck typing

def print_it(it):
try:

while True:
print(it.next())

except StopIteration:
pass

class It(object):
def next(self):

return "Hype for Types"

print_it(It())

Duck typing

template <typename T>
void print_me(T x) {

x.print();
}

struct Me {
void print() {

// print
}

};

int main() {
print_me(Me());

}

Duck typing

Pros:
▶ Easy to work with
▶ Compatible with static type checking
▶ Easy to extend, lightweight interfaces

Cons:
▶ No concrete interface
▶ Dispatch

Inference in practice

jshell> var x = "Hello world!";
x ==> "Hello world!"
jshell> var y = (x) -> x;
| Error:
| cannot infer type for local variable y
| (lambda expression needs an explicit target-type)
| var y = (x) -> x;
| ^---------------^

scala> (x : Any) => x;
res1: Any => Any = $$Lambda$1102/1796415927
scala> null;
res2: Null = null

Hmm... Why doesn’t everyone just do the right thing?

Gradual typing

def fib(n: int) -> Iterator[int]:
a, b = 0, 1
while a < n:

yield a
a, b = b, a+b

mypy2

2http://mypy-lang.org

http://mypy-lang.org

Gradual typing

function print<T: {x: number,
y: number}> (point: T): T {

var x: number = point.x;
var y: number = point.y;
console.log('x: ' + Math.abs(x) +

', y: ' + Math.abs(y));
return point;

}

Flow3

3https://flow.org

https://flow.org

Gradual typing

#lang typed/racket
(struct pt ([x : Real] [y : Real]))

(: distance (-> pt pt Real))
(define (distance p1 p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
(sqr (- (pt-y p2) (pt-y p1))))))

Typed Racket4

4https://docs.racket-lang.org/ts-guide/

https://docs.racket-lang.org/ts-guide/

Gradual typing

Pros:
▶ Encourages typing discipline
▶ Easier than converting to static typing
▶ Best of both worlds

Cons:
▶ Very hard to implement on top of language
▶ Interoperability? Compatibility?
▶ Worst of both worlds

Mutation and effects

sumST :: Num a => [a] -> a
sumST xs = runST $ do

n <- newSTRef 0
forM_ xs $ \x -> do

modifySTRef n (+x)
readSTRef n

ST monad5

5https://wiki.haskell.org/Monad/ST

https://wiki.haskell.org/Monad/ST

Mutation and effects

public static void main(String[] args)
throws IOException, NoSuchMethodException,

SocketException
{ ... }

Mutation and effects

Java checked exceptions6

6
https://blog.takipi.com/ignore-checked-exceptions-all-the-cool-devs-are-doing-it-based-on-600000-java-projects/

https://blog.takipi.com/ignore-checked-exceptions-all-the-cool-devs-are-doing-it-based-on-600000-java-projects/

Mutation and effects

double maximum(const double d1, const double d2) {
double dResult = d1;
if (d2 > dResult) {

dResult = d2;
}
d1 = 0.0; // Illegal
d2 = 0.0; // Illegal
return dResult;

}

Or, declare methods as const to indicate they don’t change
instance state.

Mutation and effects

Now we’ve seen gradual typing. What about checked exceptions
and const correctness?

▶ Poisoning
▶ Adding to codebase much more painful
▶ Hacks to work around
▶ Rest of type system ignorant (method resolution)
▶ Lack of familiarity with monads!
▶ Useful only if everyone does it

Mutation and effects

Now we’ve seen gradual typing. What about checked exceptions
and const correctness?
▶ Poisoning
▶ Adding to codebase much more painful
▶ Hacks to work around
▶ Rest of type system ignorant (method resolution)
▶ Lack of familiarity with monads!
▶ Useful only if everyone does it

Protocols and interfaces
message Person {
string name = 1;
int32 id = 2; // Unique ID number for this person.
string email = 3;
enum PhoneType {

MOBILE = 0;
HOME = 1;
WORK = 2;

}
message PhoneNumber {

string number = 1;
PhoneType type = 2;

}
repeated PhoneNumber phones = 4;

}

Protocol Buffers7
7https://github.com/google/protobuf

https://github.com/google/protobuf

Protocols and interfaces

▶ Cross-platform RPC and message interfaces
▶ Somewhat specialized to message protocols (repeated

messages, etc).
▶ How to serialize and deserialize? GADTs?8

8https://blog.janestreet.com/why-gadts-matter-for-performance/

https://blog.janestreet.com/why-gadts-matter-for-performance/

Generic programming

▶ Not the same as polymorphism!
▶ Polymorphism describes how to compute regardless of a

type
▶ Generic programming describes how to compute across

many types

▶ Typeclasses (Eq, Read, Foldable)
▶ Deriving instances (scrap your boilerplate)

Generic programming

data Bit = O | I
class Serialize a where
put :: a -> [Bit]

instance Serialize Bool where
put True = [I]
put False = [O]

instance Serialize a => Serialize [a] where
put [] = []
put (h:t) = put h ++ put t

data Tree a = Leaf | Node a (Tree a) (Tree a)

Generic programming

data Bit = O | I
class Serialize a where
put :: a -> [Bit]

instance Serialize Bool where
put True = [I]
put False = [O]

instance Serialize a => Serialize [a] where
put [] = []
put (h:t) = put h ++ put t

data Tree a = Leaf | Node a (Tree a) (Tree a)

Generic programming

data Tree a = Leaf | Node a (Tree a) (Tree a)

data U1 p = U1
data (:+:) f g p = L1 (f p) | R1 (g p)
data (:*:) f g p = f p :*: g p

type RepTree a =
U1

:+: a :*: Tree a :*: Tree a

Generic programming

class Generic a where
type Rep a :: * -> *
from :: a -> (Rep a) x
to :: (Rep a) x -> a

instance Generic (Tree a) where
type Rep (Tree a) = RepTree a
from Leaf = L1 U1
from (Node a l r) = R1 (a :*: l :*: r)
to (L1 U1) = Leaf
to (R1 (a :*: l :*: r)) = Node a l r

Generic programming

class GSerialize f where
gput :: f a -> [Bit]

instance GSerialize U1 where
gput U1 = []

instance (GSerialize a, GSerialize b) =>
GSerialize (a :*: b) where
gput (a :*: b) = gput a ++ gput b

instance (GSerialize a, GSerialize b) =>
GSerialize (a :+: b) where
gput (L1 x) = O : gput x
gput (R1 x) = I : gput x

Generic programming

{-# LANGUAGE DeriveGeneric #-}
data Tree a = Leaf | Node a (Tree a) (Tree a)
deriving Generic

-- Magically connect Serialize with GSerialize
-- See reference!
instance (Serialize a) => Serialize (Tree a)

GHC.Generics9
Not just in Haskell!10

9https://wiki.haskell.org/GHC.Generics
10http://willcrichton.net/notes/type-directed-metaprogramming-in-rust/

https://wiki.haskell.org/GHC.Generics
http://willcrichton.net/notes/type-directed-metaprogramming-in-rust/

Nominal typing

type p1 = int * string
type p2 = int * string

datatype s1 = L of int | R of string
datatype s2 = L of int | R of string

Structural vs. nominal typing

Nominal typing

type stack = < pop: int option; push: int -> unit >
class stack2 = object
val mutable v : int list = []
method pop = match v with x::xs -> v <- xs; Some x

| _ -> None
method push x = v <- x::v

end
let s : stack = object
val mutable v = []
method pop = match v with x::xs -> v <- xs; Some x

| _ -> None
method push x = v <- x::v

end
let s2 : stack2 = new stack2
let _ = (s : stack2)
let _ = (s2 : stack)

Nominal typing

class Stack<T> {
LinkedList<T> v = new LinkedList<>();
public T pop() { return v.poll(); }
public void push(T x) { v.push(x); }

}
class Stack2<T> {

LinkedList<T> v = new LinkedList<>();
public T pop() { return v.poll(); }
public void push(T x) { v.push(x); }

}

Try assigning instances of Stack to Stack2.

Nominal typing

class Stack<T> {
LinkedList<T> v = new LinkedList<>();
public T pop() { return v.poll(); }
public void push(T x) { v.push(x); }

}
class Stack2<T> {

LinkedList<T> v = new LinkedList<>();
public T pop() { return v.poll(); }
public void push(T x) { v.push(x); }

}

Try assigning instances of Stack to Stack2.

Nominal typing

▶ See typealias in Swift
▶ See newtype in Haskell
▶ When is structural typing useful?
▶ When is nominal typing useful?
▶ Are classes types?
▶ Should they be?

Union and intersection types

function padLeft(value: string,
padding: string | number) {

// ...
}

Union and intersection types

function extend<T, U>(first: T, second: U): T & U {
let result = <T & U>{};
for (let id in first) {

(<any>result)[id] = (<any>first)[id];
}
for (let id in second) {

if (!result.hasOwnProperty(id)) {
(<any>result)[id] = (<any>second)[id];

}
}
return result;

}

TypeScript11

11http://www.typescriptlang.org/docs/handbook/advanced-types.html

http://www.typescriptlang.org/docs/handbook/advanced-types.html

Union and intersection types

“Programming with Intersection Types and Bounded Polymorphism”

Benjamin C. Pierce’s PhD thesis, 199112

12https://www.cs.cmu.edu/~rwh/theses/pierce.pdf

https://www.cs.cmu.edu/~rwh/theses/pierce.pdf

Resource analysis

let rec append l1 l2 =
match l1 with

| [] -> l2
| x::xs ->
let _ = Raml.tick(1.2) in
x::(append xs l2)

== append :
['a list; 'a list] -> 'a list
Simplified bound:

3.00 + 11.00*M

Resource Aware ML13

13http://www.raml.co/

http://www.raml.co/

Modularity

Buzzwords:
▶ What’s a module?
▶ What’s an abstraction?
▶ What’s an existential type?
▶ What’s a higher kind?

Modularity

Deep questions:
▶ How do I express a module having a type and operations on

that type?
▶ How do I seal a module with some signature?
▶ Why do functors generate new types when I apply them over

again?
▶ How do I allow users to build robust software?

▶ What on earth is the meaning of this code?
- let datatype foo = Foo in Foo end;
val it = Foo : ?.foo

Modularity

Deep questions:
▶ How do I express a module having a type and operations on

that type?
▶ How do I seal a module with some signature?
▶ Why do functors generate new types when I apply them over

again?
▶ How do I allow users to build robust software?
▶ What on earth is the meaning of this code?

- let datatype foo = Foo in Foo end;
val it = Foo : ?.foo

Formal systems

▶ How do I verify that my compiler does not have a hidden
backdoor?

▶ How do I make sure my Pentiums divide floating point
numbers correctly?

▶ How do I anticipate and automatically repair program bugs?
▶ How does the Coq theorem prover help find a mathematical

proof?
▶ How do I solve generalized satisfiability problems?
▶ How do I ensure certain security properties about my code?

Formal systems

int{Alice→;Alice←*} b;
int{Alice→Bob;Alice←*} y = 0;
if (b) {

// pc is at level {Alice→;Alice←*} at this point.
declassify ({Alice→;Alice←*} to {y}) {

// at this point, pc has been declassified
// to the label of the local variable y
// (that is, {Alice→Bob;Alice←*}) permitting
// the assignment to y
y = 1;

}
}

Jif14

14https://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html

https://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html

Communication and concurrency

▶ How do I securely define a communication protocol?
▶ How do I reason about high-level stateful programs?
▶ How do I model concurrency in a systems programming

language?

Communication and concurrency
choice natstream {
int /\ choice natstream next;
void stop;

};
typedef choice natstream nats;
nats $c from(int n) {

switch ($c) {
case next:

send($c, n);
$c = from(n+1);

case stop:
close($c);

}
}

Session types15

15http://cs.cmu.edu/~janh/courses/411/16/lec/23-concur.pdf

http://cs.cmu.edu/~janh/courses/411/16/lec/23-concur.pdf

Communication and concurrency

state File {
public final String filename;

}
state OpenFile extends File {

private CFilePtr filePtr;
public int read() { ... }
public void close() [OpenFile>>ClosedFile]
{ ... }

}
state ClosedFile extends File {

public void open() [ClosedFile>>OpenFile]
{ ... }

}

Plaid16

16http://www.cs.cmu.edu/~aldrich/plaid/

http://www.cs.cmu.edu/~aldrich/plaid/

Substructural type systems

▶ What if a variable must be used at most once?
▶ What if a variable must be used at least once?
▶ What if a variable must be used exactly once?
▶ What if a variable must be used exactly once, but in some

fixed order?

▶ Linear, affine, and other type systems achieve these goals.
▶ Clean languagehttps://clean.cs.ru.nl/Clean
▶ unique_ptr in C++, with move semantics!
▶ Rust ownership trackinghttps:

//doc.rust-lang.org/1.12.1/book/ownership.html

https://clean.cs.ru.nl/Clean
https://doc.rust-lang.org/1.12.1/book/ownership.html
https://doc.rust-lang.org/1.12.1/book/ownership.html

Substructural type systems

▶ What if a variable must be used at most once?
▶ What if a variable must be used at least once?
▶ What if a variable must be used exactly once?
▶ What if a variable must be used exactly once, but in some

fixed order?

▶ Linear, affine, and other type systems achieve these goals.
▶ Clean language17
▶ unique_ptr in C++, with move semantics!
▶ Rust ownership tracking18

17https://clean.cs.ru.nl/Clean
18https://doc.rust-lang.org/1.12.1/book/ownership.html

https://clean.cs.ru.nl/Clean
https://doc.rust-lang.org/1.12.1/book/ownership.html

Type-directed compilation

▶ Why are generics sometimes erased, sometimes reified?
▶ How do we determine whether values need to be boxed?
▶ How do we tell whether two pointers are aliased?
▶ Can we optimize a program given additional type

information?
▶ Can we even put types on assembly language? (Yes!)
▶ Can we make it compile fast? (Sadly, not yet...)

Registration!

This Fall:
▶ 15-312 Foundations of Programming Languages

with Bob Harper**
▶ 15-317 Constructive Logic with Karl Crary
▶ 15-354 Computational Discrete Mathematics

with Klaus Sutner*
▶ 15-411 Compiler Design

with Jan Hoffmann and Jean Yang*
▶ 15-414 Bug Catching with Matt Fredrickson

Next Spring:
▶ 15-316 Software Foundations of Security and Privacy
▶ 15-417 HOT Compilation
▶ 15-819 Advanced Topics (?)

Next Week:
▶ 98-317 Hype for Types with Final Exam!****

Tell your friends!

Thanks for a great semester!

	Introduction
	Case Studies
	Duck Typing
	Inference in practice
	Gradual typing
	Mutation and effects
	Protocols and interfaces
	Generic programming
	Nominal typing
	Union and intersection types
	Resource analysis
	Modularity
	Formal systems
	Communication and concurrency
	Substructural type systems
	Type-directed compilation

	Conclusion

