
Type Inference
Figuring out an expression’s type

without help from the programmer



Type Checking
vs

Type Synthesis
vs

Type Inference



The difference between Checking and 
Synthesis:

The inputs/outputs

Checking: program and type -> Boolean

Synthesis : program -> type



An example

?



Recap: Type Checking Algorithm

INPUT INPUT



Recap: Type Checking Algorithm

?



Recap: Type Checking Algorithm

?



Recap: Type Checking Algorithm

? ?



Recap: Type Checking Algorithm

?

?



Recap: Type Checking Algorithm

!

?



Recap: Type Checking Algorithm

?



Recap: Type Checking Algorithm

?



Recap: Type Checking Algorithm

!



Recap: Type Checking Algorithm



Type Synthesis Algorithm

INPUT OUTPUT



Type Synthesis Algorithm

?

?



Type Synthesis Algorithm

?

?
?



Type Synthesis Algorithm

?

?
?

?

?



Type Synthesis Algorithm

?

?
?

?

?
?



Type Synthesis Algorithm

!

?
?

?

?



Type Synthesis Algorithm

?
?

?

?



Type Synthesis Algorithm

?
?

?

?
?



Type Synthesis Algorithm

?
?

!

?



Type Synthesis Algorithm

?
?

?



Type Synthesis Algorithm

?
?



Type Synthesis Algorithm

?



Type Synthesis Algorithm



Type Synthesis Algorithm



The difference between Synthesis and 
Inference

Type annotations in the 
programming language

If we can do type inference, then 
the programmer doesn’t need to 

annotate types



Let’s try to feel out an algorithm 
for inference
Starting point: it’ll be a lot like synthesis



Trying to infer types

?

INPUT



Trying to infer types

?

What type do we put in the context for f?

UHHH IDK….. LETS GUESS!



Trying to infer types

?

?



Trying to infer types

?

?



Trying to infer types

?

?



Trying to infer types

?

?

Now what?
We need ?1 to be an arrow type



Trying to infer types

?

?

Make new guess variables ?3 and ?4

“Force” the equality ?1 = ?3 -> ?4



Trying to infer types

?

?

Make new guess variables ?3 and ?4

“Force” the equality ?1 = ?3 -> ?4

?

?



Trying to infer types

?

?

?

?



Trying to infer types

?

?

?



Trying to infer types

?

?

?

“Force” the equality ?2 = ?3



Trying to infer types

?

?

?



Trying to infer types

?

?



Trying to infer types

?



Trying to infer types



Trying to infer types



I think we need to talk about this 
“forcing equality” stuff…
It seems like it could be complicated, so let’s be more formal about it.



Unification: A problem in math/CS

•Input: a pair of terms

•Output: a list of mappings from term 
variables to terms, such that applying 
the mappings to the terms results in the 
same term



Example of unification:

• Input: 



Example of unification:

• Input: 

•Output:



Example of unification:

• Input: 

•Output:

•Result of applying the mappings:



Is unification always possible?



Is unification always possible?

• Input: 



Is unification always possible?

• Input: 

•Cannot unify; terms have different head symbols.

•No, unification is not always possible.



How else can unification fail?



How else can unification fail?

• Input: 



How else can unification fail?

• Input: 

•Cannot unify; circularity

• There are two ways for unification to fail:

head symbol conflict and circularity.



Is unification always unique?



Is unification always unique?

• Input: 



Is unification always unique?

• Input: 

•Many valid outputs:



Is unification always unique?

• Input: 

•Many valid outputs:



Is unification always unique?

• Input: 

•Many valid outputs:



Coming up with an algorithm for 
unification



Case 1: one of the terms is a variable



Case 1: one of the terms is a variable

If the other term is the same variable, output []



Case 1: one of the terms is a variable

If the other term is the same variable, output []

Otherwise, if the other term contains the variable, circularity error.



Case 1: one of the terms is a variable

If the other term is the same variable, output []

Otherwise, if the other term contains the variable, circularity error.

Otherwise, just map the variable to the other term.



Case 2: Terms have same head symbols



Case 2: Terms have same head symbols

1. Unify the first subterms.



Case 2: Terms have same head symbols

1. Unify the first subterms.



Case 2: Terms have same head symbols

1. Unify the first subterms.



Case 2: Terms have same head symbols

1. Unify the first subterms.



Case 2: Terms have same head symbols

1. Unify the first subterms.

2. Unify the second subterms?



Case 2: Terms have same head symbols

1. Unify the first subterms.

2. Unify the second subterms? Wait… that doesn’t make sense



Case 2: Terms have same head symbols

1. Unify the first subterms.

2. Unify the second subterms? Wait… that doesn’t make sense

Solution: Apply the mappings from unifying the first subterms to the second 
subterms before unifying them.



Case 2: Terms have same head symbols

1. Unify the first subterms.

2. Apply the mappings from unifying the first subterms to the second 
subterms, then unify the second subterms.



Case 2: Terms have same head symbols

1. Unify the first subterms.

2. Apply the mappings from unifying the first subterms to the second 
subterms, then unify the second subterms.



Case 2: Terms have same head symbols

1. Unify the first subterms.

2. Apply the mappings from unifying the first subterms to the second 
subterms, then unify the second subterms.



Case 2: Terms have same head symbols

1. Unify the first subterms.

2. Apply the mappings from unifying the first subterms to the second 
subterms, then unify the second subterms.



Case 3: Terms have different head symbols



Case 3: Terms have different head symbols

Head symbol conflict.



Tips on using unification for type inference

• DON’T CARE ABOUT EFFICIENCY
• Type inference can be done in linear time (with respect to program size) but 

that’s not fun

• Focus on maintaining invariants about which type variables can 
appear where

• Keep the difference between expression terms and type terms 
straight
• Unification happens to type terms and maps type variables to other types

• Expression terms (including expression variables) have types, which are type 
terms which contain type variables.



Tips on using unification for type inference

• At any point during the execution of the algorithm, every type 
variable will fall into one of two categories:
• Still allowed to appear in our guess types

• Has been “unified away” and should no longer show up in any types in our 
context

• A variable moves from the first category to the second category when 
the unification algorithm maps it to something

• Take care to apply the variable mappings returned by unification, so 
that variables that have been “unified away” don’t reappear or get 
mapped twice



Tips on using unification for type inference

• Consider using a dictionary to store the type that each “unified away” 
variable is currently mapped to

• Your inference algorithm will then be passing two dictionaries around: 
one representing the context which maps expression variables to 
types, and one representing the mapping from “unified away” type 
variables to types

• You’ll want to maintain an invariant like: if a variable has been 
“unified away”, it cannot appear in any type mapped to by either 
dictionary

• Every time you call the unification algorithm, apply the mappings (in 
left-to-right order) to the type variable dictionary



Tips on using unification for type inference

• Whenever you want to force a type to be of a certain form generate 
new (not used anywhere else) type variables and unify
• e.g. say we want to force a type τ to be an arrow type.

• Create fresh type variables α and β, then unify:



Questions?


