
Homework 2

Types ∼= Theorems

98-317: Hype for Types

Checkpoint Due: 5 Feb 2019 at 6:30 PM
Final Due: 12 Feb 2019 at 6:30PM

1 Introduction

In class, we discussed the idea that we can use types to express logical propositions, and that creating a
value of a particular type corresponds to proving a proposition. In this homework, you will explore this idea
further, writing some functions in SML to prove various propositions in logic.

There are two sections to this assignment - a checkpoint and a final. For each section, you’ll be implementing
a different structure.

1



2 Logic in SML

In this homework, you will be implementing two structures called SimpleProofs (checkpoint) and Proofs

(final) so that they ascribe to the signatures SIMPLE PROOFS and PROOFS respectively. The SIMPLE PROOFS

signature declares 7 values with types that correspond to logical propositions. The PROOFS signature has 6
slightly more difficult to prove types-as-propositions. In order to implement the signature, you will have to
prove the propositions!

For the most part, you can decide what the behavior of the values in these structures should be; they just
have to have the correct type. However, there are a few rules:

1. All of the definitions must be values. This prohibits code like

val demorgan_cong = raise Fail "This typechecks!"

2. All function definitions must be total. That is, they must terminate on all possible inputs. This
prohibits code like

fun contrapos f = raise Fail "This typechecks!"

To help you implement these functions, we’ve given you a couple of definitions in the Definitions structure.
Its signature is reproduced below.

signature DEFINITIONS =

sig

datatype (’a,’b) or = INL of ’a | INR of ’b

type void

type ’a not = ’a -> void

val abort : void -> ’b

end

The or type is the same as the sum type we discussed in the typechecking lecture, and is meant to represent
logical or. A value of this type can either have the INL constructor and contain a value of type ’a, or have
the INR constructor and contain a value of type ’b.

The void type is a type for which it is impossible to construct a value. This represents False. If you could
somehow construct void, it would allow you to construct a value of any type. This is what abort does:
it is a total function from void to any arbitrary type ’c. This mirrors how from False, you can conclude
anything.

The not type is shorthand for ’a -> void. In logic, ¬A is defined to be “If I assume A, then I can reach a
contradiction,” so this is also how it is defined in terms of types.

You can use these definitions as much as you’d like in your code.

3 Checkpoint

For the first section of this assignment, you’ll be implementing the SimpleProofs structure. You can compile
your solutions to see if they typecheck by running

smlnj -m checkpoint.cm

To submit your assignment, run

make checkpoint

and submit the tar file to the Logic - Checkpoint assignment.

This part of the assignment is due Tuesday, 5 February at 6:30 PM.

2



4 Final

For the second section of this assignment, you’ll be implementing the Proofs structure. You can compile
your solutions to see if they typecheck by running

smlnj -m final.cm

To submit your assignment, run

make final

and submit the tar file to the Logic - Final assignment.

This part of the assignment is due Tuesday, 12 February at 6:30 PM.

3


