Homework 2
Types = Theorems

98-317: Hype for Types

Checkpoint Due: 5 Feb 2019 at 6:30 PM
Final Due: 12 Feb 2019 at 6:30PM

1 Introduction

In class, we discussed the idea that we can use types to express logical propositions, and that creating a
value of a particular type corresponds to proving a proposition. In this homework, you will explore this idea
further, writing some functions in SML to prove various propositions in logic.

There are two sections to this assignment - a checkpoint and a final. For each section, you’ll be implementing
a different structure.



2 Logic in SML

In this homework, you will be implementing two structures called SimpleProofs (checkpoint) and Proofs
(final) so that they ascribe to the signatures SIMPLE_PROOFS and PROOFS respectively. The SIMPLE_PROOFS
signature declares 7 values with types that correspond to logical propositions. The PROOFS signature has 6
slightly more difficult to prove types-as-propositions. In order to implement the signature, you will have to
prove the propositions!

For the most part, you can decide what the behavior of the values in these structures should be; they just
have to have the correct type. However, there are a few rules:

1. All of the definitions must be values. This prohibits code like
val demorgan_cong = raise Fail "This typechecks!"

2. All function definitions must be total. That is, they must terminate on all possible inputs. This
prohibits code like

fun contrapos f = raise Fail "This typechecks!"

To help you implement these functions, we’ve given you a couple of definitions in the Definitions structure.
Its signature is reproduced below.

signature DEFINITIONS
sig
datatype (’a,’b) or
type void
type ’a not = ’a -> void
val abort : void -> ’b
end

INL of ’a | INR of ’b

The or type is the same as the sum type we discussed in the typechecking lecture, and is meant to represent
logical or. A value of this type can either have the INL constructor and contain a value of type ’a, or have
the INR constructor and contain a value of type ’b.

The void type is a type for which it is impossible to construct a value. This represents False. If you could
somehow construct void, it would allow you to construct a value of any type. This is what abort does:
it is a total function from void to any arbitrary type ’c. This mirrors how from False, you can conclude
anything.

The not type is shorthand for >a -> void. In logic, = A is defined to be “If T assume A, then I can reach a
contradiction,” so this is also how it is defined in terms of types.

You can use these definitions as much as you’d like in your code.

3 Checkpoint

For the first section of this assignment, you’ll be implementing the SimpleProofs structure. You can compile
your solutions to see if they typecheck by running

smlnj -m checkpoint.cm
To submit your assignment, run
make checkpoint
and submit the tar file to the Logic - Checkpoint assignment.
This part of the assignment is due Tuesday, 5 February at 6:30 PM.



4 Final

For the second section of this assignment, you’ll be implementing the Proofs structure. You can compile
your solutions to see if they typecheck by running

smlnj -m final.cm
To submit your assignment, run
make final
and submit the tar file to the Logic - Final assignment.

This part of the assignment is due Tuesday, 12 February at 6:30 PM.



