Please choose (at least) one of the following problems to submit.

1. Define isSorted by

$$
\begin{aligned}
\text { isSorted }[] & =\mathbb{1} \\
\text { isSorted }[x] & =\mathbb{1} \\
\text { isSorted } x:: y:: x s & =\text { if } x \leq y \text { andalso isSorted } \mathrm{y}:: \text { xs then } \mathbb{1} \text { else } \mathbb{0}
\end{aligned}
$$

Write dependently typed pseudocode (anything is OK as long as it's reasonable) with type

$$
[\mathbb{N}] \rightarrow \Sigma_{x s:[\mathbb{N}]} \text { isSorted }(x s)
$$

2. Two types A and B are said to be ismorphic if there exist functions $f: A \rightarrow B$ and $g: B \rightarrow A$ such that $f \circ g=i d$ and $g \circ f=i d$.
Show that

$$
\Sigma_{x: A} \Sigma_{y: B(x)} C((x, y)) \cong \Sigma_{z: \Sigma_{x: A} B(x)} C(z)
$$

3. Using the definition of $>$ from the notes, prove

$$
\Pi_{n: \mathbb{N}}((n=0)+(n>0))
$$

by finding a value of the correct type.

