
Homework 10
Pure Type Systems

98-317: Hype for Types

Due: 30 Apr 2019 at 6:30 PM

1 Introduction

For the past two weeks, we have been discussing high-powered type systems. Beginning at
the simply typed λ-calculus, λ→, we have introduced the following ideas:

• Quantification of types on other types;

• Higher-order types, acting like functions on types;

• Dependency of types on values.

The lambda cube captured the idea of these three dimensions being orthogonal to each other.
Some well-known type theories based on these ideas include System F, with universally
quantified types; System Fω, with quantification and type operators; and the Calculus of
Constructions, with all three features.

In this assignment, we will examine a λ-calculus with the following features: dependent types
and first-order type operators. The type operators being first order implies that this system
lies somewhere between F and Fω along that dimension; it is possible here to express functions
on types, but not higher-order functions, and that is why we are merely first-order.

The name of this type theory is λΠ. It is the metatheory of the Edinburgh Logical Frame-
work, and for that reason it is also commonly known by the name LF. LF is a powerful
theory useful for logic programming and computer-assisted proof as well as automated the-
orem proving. The Twelf (http://twelf.org) project is an implementation of LF from
CMU.

Though LF lacks quantification, do not be fooled into thinking that it is not a very powerful
type system. The presence of dependent types means that LF is capable of expressing
many interesting things, including entire other type systems. In this assignment, we will be
exploring an embedding of the simply typed λ-calculus into LF. In essence, a system like
LF can act as a metatheory, in which the rules of another type system like λ→ may be
embedded. This enables rapid prototyping of type systems and makes testing and proving
properties about them easier. Such a framework means we can reuse syntax handling and
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type checking features, bringing us well on the way to having a prototype interpreter very
quickly.

LF is one of many type systems that are good at serving as a type metatheory. The type
system with quantification, type operators, and dependent types is known as the Calculus
of Constructions. It sits at the top-right corner of the lambda cube. It, and its extension
the Calculus of Inductive Constructions, are the basis of many logical tools. The popular
theorem prover Coq, for example, is based on and was named after the Calculus of Inductive
Constructions.

Source The material in this assignment is heavily derived from Advanced Topics in Types
and Programming Languages by Benjamin Pierce, chapter 2. You may find reading that
chapter to be helpful, as it thoroughly explains this type system.

Turning in the Homework You should submit your code solutions in the file terms.sml
to Autolab.
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2 The λΠ Type Theory

λΠ has four important concepts: terms, types, kinds, and contexts. Essentially, terms and
types correspond to the same concepts as in the simply-typed λ-calculus. Recall that kinds
are the “types of types”, and characterize type-level operators and functions (type families).
We have seen contexts all semester, and here they will link not only term variables to their
types, but also type variables to their kinds. The type system involves dependent products
(Π) at the type and kind level. Because of this, typechecking can be difficult, and type
inference is in fact undecidable. We will only go through the basics of the type system so
you understand what we will be working with.

Here is the syntax:

Terms e ::= x variables
| λ (x : τ) e abstractions
| e1 e2 applications

Types τ ::= t type variables
| Π (x : τ) τ ′ dependent product type
| τ e type family application

Kinds κ ::= ∗ kind of proper types
| Π (x : τ)κ kind of type families

Contexts Γ ::= · empty
| Γ, x : τ term binding
| Γ, t : κ type binding

In addition, when a dependent product is redundant, we use a more compact notation.
α→ β is shorthand for Π (x : α) β when x does not appear in β.

The judgments and rules of the type system are complex and you do not need to understand
them. However, here are some important characteristics:

• Term typing proceeds as in λ→. Abstractions (functions) have dependent type.

• Type variables and type families are not generated during the typechecking of a pro-
gram. Instead, the programmer specifies an initial context that declares a set of type
variables, each of which is associated with a kind. They are “baked in” to the system.
This initial context may also include term variables associated with types.

• Type family application works in the same way as function application, except that
the argument is a term that is substituted for the term variable in a dependent type.

• The dependent Π type has kind ∗. It does not have dependent kind. This is because
a Π type is a proper type. The only things that have dependent kind are type family
constructors. What is such a constructor? In SML, list is an example of a type
family constructor, which builds a type from another type. We could say that list
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has kind ∗ → ∗.1 Therefore, perhaps “type” is not the ideal name for all τ . Only τ : ∗
are proper types; the remainder might be better called “type constructors”. These
constructors with kind other than ∗ show up only in the initial context.

You might be wondering why, even in the presence of dependent types, typechecking is
decidable. The reason is that terms, types, and kinds are strongly normalizing, i.e. there are
no non-terminating computations and every λ-term can be reduced to a normal form. This
is a consequence of the fact that λ→ is strongly normalizing, and does not hold for systems
with dependent types in general.

3 Propositions as Types

The Curry-Howard correspondence relates types to propositions and programs to proofs. In
the presence of dependent types, we gain even more power to write logical propositions and
prove them simply by writing functional programs that typecheck.

Previously, we have equated propositions such as A =⇒ B with types such as α → β.
Terms inhabiting the type, in this case functions taking α and returning β, serve to prove
the proposition. A function is a transformation from a proof of A into a proof of B. This
perfectly captures propositional, or zeroth-order, logic.

However, we may want to work in a logic with predicates like P (A), and quantification over
propositions. With dependent types, we may encode quantification using the dependent
product. The proposition

∀ (x : A)P (x)

becomes the dependent product
Π (x : α)P (x)

The ability to treat propositions as types has impact on programming. We may make logical
statements by writing them as types and prove them (or request a proof) by passing around
terms inhabiting the types. An example application is in the definition of dependently-typed
vectors with a fixed length n encoded into the type. This type might be denoted Vector t n
where n ∈ N, and we could define a safe indexing operation sub with the type:

Π (n : N) Vector t n→ Π (l : N) Lt l n→ t

As you can see, we make use of a new dependent type Lt l n which is the proposition l < n.
The indexing operator is dependent on the length n of the vector and the index l, requests
a proof that l < n, and then extracts an element from the vector. In a dependently typed
system, such a type would be extremely powerful and statically encode requirements that
hold on functions and data structures. Unfortunately, few practical programming languages
have support for dependent types, due to the lurking danger of undecidability and the
difficulty in checking dependent types in general.

1Though SML relies on Fω, which is a different type system, the idea is similar here. In particular, in
λΠ the left side of the → should be a type, not a kind, because we only have first-order operators.
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4 λ→ in LF

We will now describe an embedding of λ→ into the LF type system. Since the λ-calculus
has types and terms, we will represent each “meta-type” as a type in LF.

Ty : ∗
Tm : Ty→ ∗

Ty is the meta-type of λ-calculus types. For a lambda calculus type α, Tm α is the meta-type
of λ-calculus terms with that type.

Now we define the types of λ-calculus.

base : Ty
arrow : Ty→ Ty→ Ty

The simply typed λ-calculus normally only has only one type constructor, →. However this
poses a problem since then there is no base case, so we add a type called base.

Finally we define the two term constructors.

app : Π (A : Ty) Π (B : Ty)Tm (arrow A B)→ Tm A→ Tm B
lam : Π (A : Ty) Π (B : Ty) (Tm A→ Tm B)→ Tm (arrow A B)

Both of these term constructors are dependent on the function type A → B, and take A
and B as dependent parameters. Then, the difference between applications and abstractions
is made clear in the symmetry of the remainder of the type. Tm (arrow A B) is the type
of terms representing functions from A to B, Tm A is the type of terms of type A, and
Tm B is the type of terms of type B. So applications take a function and apply it to a
term within the codomain, yielding a term within the domain. Abstractions take a mapping
from the codomain to the domain, and build a function term representing that mapping.
As Pierce describes, this technique of lifting the → in LF into the arrow constructor in the
λ→ implementation is called higher-order abstract syntax. We now have a way of seeing how
abstraction and application are intimately related to each other.

In the code handout, you are provided with an implementation of LF, its typechecker, and
the embedding of λ→. You can see the abstract syntax of LF in check-lf.sig, and the
signature of its typechecker in check-lf.sig. The implementation of the typechecker is
impl/check-lf.sig. The signature of the λ→ embedding is in stlc.sig, and its imple-
mentation is in impl/stlc.sml. You are encouraged to take a peek at these implementations
to see how the type theory is implemented.

Your task will be to write some code in the embedded λ-calculus. In terms.sml you will
see the descriptions of the terms that you should implement. In main.sml you will see
the routine which compares the terms to their expected types. To run the checker, load
sources.cm and run Main.check () in the REPL.
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Specifically, you can see in terms.sml the implementation of the polymorphic identity func-
tion as well as the Church encoding of the number 1. These are the encodings:

id : α→ α

id , λ (x : α)x
one : α→ (α→ α)→ α

one , λ (x : α)λ (f : α→ α) f x

We must translate the encoding into the embedded λ→ in LF. These are the transla-
tions:

id , lam A A (λ (x : Tm A)x)

one , lam A (arrow (arrow A A) A)
(λ (x : Tm A) lam (arrow A A) A (λ (f : Tm (arrow A A)) app A A f x))

Since we do not have real polymorphism in λ→, we simply concoct some type variables
A,B,C, . . . and instruct the typechecker to accept the variables in the initial context. The
identity function is implemented as an abstraction from A to A whose implementation maps
a term of type Tm A to itself. Try to match the implementation of one with the definitions
of app and lam to see how its translation works and typechecks at the levels of LF and the
embedded λ→.

Task. You are asked to implement the Church encodings of Boolean true and false, as well
as the constructor for pairs.

Here are the encodings. You must translate them into LF:

btrue : α→ α→ α

btrue , λ (x : α)λ (y : α)x
bfalse : α→ α→ α

bfalse , λ (x : α)λ (y : α) y
pair : α→ β → (α→ β → γ)→ γ

pair , λ (x : α)λ (y : β)λ (f : α→ β → γ) f x y

Hint: The Lam and App constructors always first take two arguments: the domain type and
the codomain type. Then, Lam takes a “higher-order function” corresponding to λ in LF
(and to \ in the code).

Second Hint: There are three “lambdas” in the code. The first is Lam. This says “construct
a λ-function in λ→”. The second is \. This says “construct a term-level abstraction in LF”.
The final is fn. This is just a keyword in SML. It doesn’t build any LF syntax trees!

Third Hint: Don’t forget the correct uses of Tm. You shouldn’t need Ty, or the base
type.

Fourth Hint : The reference solution is 10 lines in total.
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