Functional Programming \&

 Constructive Logic

 Constructive Logic}

Hype for Types, Lecture 3
Password: constructive

Logic

\wedge	F	T
F	F	F
T	F	T

$$
\begin{gathered}
A \Rightarrow>B=-A \vee B \\
-(A \vee B)==\left(-A^{\wedge}-B\right)
\end{gathered}
$$

\Rightarrow	F	T
F	T	T
T	F	T

V	F	T
F	F	T
T	T	T

\oplus	F	T
F	F	T
T	T	F

- Nothing new
- 151/127/128 flashbacks

What if we made logic

(addition

A sensible statenent

"If you wish to prove to me that something exists, you must show me the thing."

The
Thing

Examples

- Do unicorns exist?
- Proof 1: Here is a unicorn:

- Proof 2: Assume unicorns did not exist. Then, no magical animal would ride on rainbows. But we know there is a magical animal that rides on rainbows. Contradiction! Therefore, unicorns exist.

Examples

- Did you do your homework?
- Proof 1: Here is my homework submission:

```
1- jluningp@andrew.cmu.edu_1_handin.sml \Perp
```

- Proof 2: Assume you did not do your homework. Then we would be sad. But we are not sad. Contradiction! Therefore, you did your homework.

Examples

- Can you write code that parses lambda calculus?
- Proof 1: Here is a parser
$\stackrel{s}{2}$
me momacacluspersesem
terminal IDENT of string
terminal LPAREN
terminal RPaReN
terminal LAMBDA
terminal DARROW
nonterminal Exp: exp
1:ExpOne => id_exp
1: Exp 2:ExpOne \Rightarrow Apply
nonterminal ExpOne: \exp
1:TDENT \Rightarrow Variable
1:IDENT \Rightarrow Variable
LPAREN 1:Exp RPAREN => id_exp
LAMBDA 1:IDENT DARRON 2:Exp \Rightarrow Lambda
start Exp
- Proof 2: Assume you can't. [A couple properties of lambda calculus later]. Contradiction! Therefore, you can parse lambda calculus.

The difference between Proof 1 and Proof 2 is information content.

- Do unicorns exist?
- Proof 1: I have a unicorn now.
- Proof 2: uh...
- Did you do your homework?
- Proof 1: I can now find and grade your homework.
- Proof 2: uh...
- Can you write code that parses lambda calculus?
- Proof 1: If I install cmyacc, I can parse lambda calculus now.
- Proof 2: uh...

Another statement

"It is not enough to prove that bad things will happen if the thing did not exist."

Constructive Logic

- The logic of "If you wish to prove that something exists, you must produce the thing."
- The logic of type theory, programming language theory, and computer science in general.
- Our namesake: 15-317

Now for some inference rules

Typechecking rules from last week

$$
\begin{gathered}
\frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau} \\
\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \mathrm{fn}\left(x: \tau_{1}\right) \Rightarrow e: \tau_{1} \rightarrow \tau_{2}}
\end{gathered} \frac{\Gamma \vdash e^{\prime}: \tau_{1} \Gamma \vdash e: \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash e e^{\prime}: \tau_{2}}
$$

Why constructive?

- In programming, we must actually compute and construct things.
- When I prove something using code, that code actually computes the proof
- Example:

$$
(f n(x: A)=>M): A->B
$$

is a function from a proof of A to a proof of B. If I call this function, it actually has to produce the proof of B.

$$
\text { DEN }{ }^{(1)}
$$

