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Some philosophy...

Question: What is programming?

(One possible) answer:

Programming is the art of communicating with computers

We communicate with computers using otherwise-meaningless strings
of symbols
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Some philosophy...

while true: print("AHHHH")

fun fact 0 = 1

001001101010001

(lambda (arg) (+ arg 1))

/([a-z0-9\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})/
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S stands for...

The symbols used in a language is called the syntax.

The study of how to assign computational meaning to these symbols is
called semantics.
Formally specifying semantics for our programming languages allows us to
mathematically prove properties about how our code works. This allows us
to:

Be sure our code will return the right result

Know how long our code will take to run

Be sure that we won’t run into unforeseen bugs at runtime
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Operational vs. Denotational

There are two main approaches to specifying programming language
semantics: operational semantics and denotational semantics.

Operational semantics specifies the steps a program takes in
executing code

s 7→ s ′ s ′ 7→∗ s ′′

s 7→∗ s ′′

Denotational semantics interprets the syntax of a programming
language as a mathematical object

‖π‖ : X ⇀ X

In this lecture, I’ll be focusing on the denotational approach.

Jacob Neumann Dynamic Logic 05 March 2019 9 / 31



Operational vs. Denotational

There are two main approaches to specifying programming language
semantics: operational semantics and denotational semantics.

Operational semantics specifies the steps a program takes in
executing code

s 7→ s ′ s ′ 7→∗ s ′′

s 7→∗ s ′′

Denotational semantics interprets the syntax of a programming
language as a mathematical object

‖π‖ : X ⇀ X

In this lecture, I’ll be focusing on the denotational approach.

Jacob Neumann Dynamic Logic 05 March 2019 9 / 31



Operational vs. Denotational

There are two main approaches to specifying programming language
semantics: operational semantics and denotational semantics.

Operational semantics specifies the steps a program takes in
executing code

s 7→ s ′ s ′ 7→∗ s ′′

s 7→∗ s ′′

Denotational semantics interprets the syntax of a programming
language as a mathematical object

‖π‖ : X ⇀ X

In this lecture, I’ll be focusing on the denotational approach.

Jacob Neumann Dynamic Logic 05 March 2019 9 / 31



Operational vs. Denotational

There are two main approaches to specifying programming language
semantics: operational semantics and denotational semantics.

Operational semantics specifies the steps a program takes in
executing code

s 7→ s ′ s ′ 7→∗ s ′′

s 7→∗ s ′′

Denotational semantics interprets the syntax of a programming
language as a mathematical object

‖π‖ : X ⇀ X

In this lecture, I’ll be focusing on the denotational approach.

Jacob Neumann Dynamic Logic 05 March 2019 9 / 31



Section 2

Deterministic PDL
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DPDL

Deterministic Propositional Dynamic Logic (DPDL) is a formal semantics
for interpreting a basic programming language.

It consists of:

A state space

Interpretations of all the programs as partial functions on the state
space

A apparatus for formulating logical statements about the state space
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The State Space

We mathematically model a computer as a set X of internal states (or
configurations). The behavior of our programs will depend on the state of
the computer.

X is often either finite or countably infinite, although in some applications
we will want to have more states.
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The State Space
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The Programs

Let Π = {π0, π1, . . .} be a set of “program names”.

Each program symbol π ∈ Π denotes a partial function on our state space.
We write this as:

‖π‖ : X ⇀ X

So, for each state x ∈ X , “executing π at x” will either succeed
(terminate) and result in a new state ‖π‖ (x), or it will crash (encoded by
‖π‖ (x) being undefined).
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The Programs

π0

π1
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The Propositions

Let Φ = {p0, p1, . . .} be a countable set of “propositional variables”.
These propositional variables denote logical statements we might want to
make about a state x .

Each propositional variable p ∈ Φ denotes a subset of our state space. We
write this as:

JpK ⊆ X

Think of JpK as the set of states where p is true.
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The Propositions
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Expanding The Propositions

We can make the set of “statements” more interesting, using recursive
definitions!

If ϕ is some statement, then ¬ϕ is its negation: the statement that ϕ
is not true:

x ∈ J¬ϕK ⇐⇒ x 6∈ JϕK

If ϕ and ψ are some statements, then ϕ ∧ ψ is their conjunction: the
statement that both ϕ and ψ are true:

x ∈ Jϕ ∧ ψK ⇐⇒ x ∈ JϕK and x ∈ JψK
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Expanding The Propositions

If ϕ is a statement and π ∈ Π is some program name, then [π]ϕ is the
statement “if π terminates, then ϕ will be true after π terminates”:

x ∈ J [π]ϕ K ⇐⇒

‖π‖ (x) ∈ JϕK or ‖π‖ (x) is undefined

ϕ

π π

The formula 〈π〉ϕ, which is defined to be ¬[π]¬ϕ, expresses the statement
“π terminates, and results in a ϕ state”.
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Sanity Check: What does this formula say?

ϕ → 〈π〉ψ

(here, p → q is used as an abbreviation for ¬p ∨ q).

REQUIRES: ϕ
ENSURES: ψ
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Expanding The Program Suite

To encode (and study) more interesting behavior, we can recursively define
new programs out of old ones:

Given programs π1 and π2, we can make the program π1;π2, and give
it the following semantics:

‖π1;π2‖ (x) = ‖π2‖
(
‖π1‖ (x)

)
Given programs π1 and π2, and a formula ϕ, we can make the
program if ϕ then π1 else π2, with the following semantics:

‖if ϕ then π1 else π2‖ (x) =

{
‖π1‖ (x) if x ∈ JϕK
‖π2‖ (x) if x 6∈ JϕK
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Expanding The Program Suite

Given a program π and a formula ϕ, we can make the program
while ϕ do π, with the following semantics:

‖while ϕ do π‖ (x) =

{
x if x 6∈ JϕK
‖while ϕ do π‖

(
‖π‖ (x)

)
if x ∈ JϕK
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What we now have

So we have given semantics for a simple programming language, with:

A (possibly large) set of program states

Whatever basic programs we might want

Sequencing, conditionals, and loops

A logical syntax to talk about sate properties before and after
executing a function
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Section 3

Proving Behavior in DPDL
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Based on how we set up the logic, the following rules are true at every
state of every model, for any programs π, π1, π2 and any formulas
ϕ,ψ, θ:

(ϕ → [π1]ψ) (ψ → [π2]θ)

ϕ → [π1;π2]θ

(ϕ → [π1]ψ) (¬ϕ → [π2]ψ)

[if ϕ then π1 else π2]ψ

(ϕ ∧ ψ) → [π]ψ

ψ → [while ϕ do π](¬ϕ ∧ ψ)
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Section 4

Hoare Logic
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From PDL to Hoare Logic

It’s kinda tedious to write ϕ → [π]ψ over and over, and so we can adopt
the precondition-postcondition notation established by Tony Hoare:
{ϕ}π {ψ}.

Hoare Logic is more powerful than PDL because it allows for variable
binding and integer arithmetic. For example, we can say stuff like:

{n ≥ 0} i := n {i ≥ 0}{
a = bi

}
a := a ∗ b

{
a = bi+1

}
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}
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Here are our rules from earlier, in the Hoare notation:

{ϕ}π1 {ψ} {ψ}π2 {θ}
{ϕ}π1;π2 {θ}

{ϕ}π1 {ψ} {¬ϕ}π2 {ψ}
{} if ϕ then π1 else π2 {ψ}

{ϕ ∧ ψ}π {ψ}
{ψ}while ϕ do π {¬ϕ ∧ ψ}
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A 122-style example

i:=n;
res:=1;
(while (i>0)
do

res := res * b;
i := i-1

);
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i:=n;
res:=1;
(while (i>0)
do{

i > 0 ∧ i ≥ 0 ∧ res * bi = bn
}
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i ≥ 0 ∧ res * bi = bn

}
);
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A 122-style example

{n ≥ 0}
i:=n;
res:=1;{
i ≥ 0 ∧ res * bi = bn

}
(while (i>0)
do{

i > 0 ∧ i ≥ 0 ∧ res * bi = bn
}

res := res * b;
i := i-1{
i ≥ 0 ∧ res * bi = bn

}
);{
¬(i > 0) ∧ i ≥ 0 ∧ res * bi = bn

}
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Other Cool Stuff

Hoare Logic and DPDL are really only just the beginning of things you can
do with denotational and axiomatic semantics!

Nondeterministic program semantics (replace the partial functions
with binary relations)

Heap Allocation

Concurrency

Recursion and Fixed-Point Operators

Functional Programming

Cost Semantics

Hoare Calculus + Types!

More complex mathematics to make the modal logic more powerful
(topological structure, structure-preserving maps and category theory,
etc.)
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Thank you!
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