
.
Hype for Types: Lecture 3

Spring 2019

Password: Spooky

Hype for Types: Lecture 3

Spring 2019

Hype for Types: Lecture 3

Spring 2019

What is polymorphism?

• A piece of code is polymorphic if it satisfies two properties
1. It works with values of any type.
2. It treats all types the same.

• Examples:

fn x => x

fn (x, y) => x

fun map f [] = []

| map f (x::xs) = (f x)::(map f xs)

Works with values of any type

• The types of polymorphic values are given by type variables.

• Type variables can be substituted with any type

(fn (x : ‘a) => x) : ‘a -> ‘a

(fn (x : ‘a, y : ‘b) => x) : ‘a * ‘b -> ‘a

fun map (f : ‘a -> ‘b) ([] : ‘a list) : ‘b list = []

| map f (x::xs) = (f x)::(map f xs)

Should treat all types the same

If I have

• A relation R between two types τ1 and τ2

• A polymorphic function p : ‘a -> anything

• Some values v1 : τ1 and v2 : τ2 such that R(v1 , v2)

then

p(v1)≅ p(v2)

(if you use R to check equality anywhere values of type τ1 and τ2 are
compared)

Example

• τ1 = bool and τ2 = int

• R (x, y) = (x is false and y is 0) or (x is true and y is 1)
• val p = fn x => x

Does p(true) ≅R p(1)? (≅R means ≅ but using R to compare ints and bools)

(fn x => x) true

≅R true [stepping]

≅R 1 [R(true, 1)]

≅R (fn x => x) 1 [backwards stepping]

It works! But why?

Let’s see how it could not be the case

1. It works with values of any type. Other languages have a form of polymorphism that involves overloading.

fun foo (x : int) : int = x + 1

fun foo (y : bool) : bool = not y

val 10 = foo 9

val false = foo true

2. It treats all types the same. Casing on a type, for example.

fun foo (x : ‘a) : int = if ‘a = int then 0 else 1

How is it typechecked?

Polymorphic functions are compiled to functions from types to
functions (1) that cannot case on their input (2).

1. Functions on values have to accept any value of that type.
Functions on types have to accept any type.

2. If the function can’t case on its input, it can’t treat different types
differently.

Type functions

val id : forall ‘a.‘a -> ‘a = tfn ‘a => fn (x : ‘a) => x

val int_id : int -> int = id[int] [fn (x : int) => x / int_id]

val true = id[bool](true)

Datatypes?

They can be polymorphic too!

datatype 'a tree = Empty

| Node of 'a tree * 'a * 'a tree

• tfn ‘a => fn (x : ‘a) => x is a function from type to
value

• tree is a function from type to type.

Who cares?

Why do we want polymorphism?

Why should we care that polymorphic functions
1. Work with values of any type

2. Treat all types the same

Wacky Applications of
Polymorphism
Phantom types, free theorems, and typesafe refs

Phantom Types

Useless type
parameters!

Type declarations where the type parameter is never used

type ‘a integer = int

Phantom Types

datatype ‘a index = Idx of int

| OutOfBounds of int

For lots of things!

To statically…

• Keep track of where data came from or where it’s going

• Enforce privacy or data sanitization policies

• Keep track of data structure properties

• Control access to operations on data structures

Example: Enforcing Sanitization

User Input Sanitize Display on Website

{ firstName: “<script src=\“sketchysite.com\”></script>Mickey”,

lastName: “Mouse” }



{ firstName: “Mickey”,

lastName: “Mouse” }

How does polymorphism help?

• Type parameter allows multiple input types without needing a
function to convert between them

• Polymorphic functions must accept both sanitized and unsanitized
inputs (Fact 1 of Polymorphism)

• The functions can’t case on whether their input is sanitized or
unsanitized (Fact 2 of Polymorphism)

This makes the type parameter invisible at runtime. It is checked
statically, and then it disappears. Efficient!

Free Theorems

Free Theorems

Theorems that you get about your code just that come from points (1)
and (2) about polymorphism

• There is only one function of type ‘a -> ‘a (up to equivalence)

• There are very few ways to write the map function that typecheck
• map : (‘a -> ‘b) -> ‘a list -> ‘b list

• How many ways are there to write a function of type ‘a * ‘a -> ‘a?
• fn (a, b) => a

• fn (a, b) => b

Typesafe refs

unsafe is not unsafe!

• Rewrite it as the compiler does when it compiles the code

• s and i are different refs, because they’re generated by two different calls to r!

(This is very unintuitive, however, so SML institutes the value restriction to prevent
confusion. Value Restriction: all polymorphic expressions must be values)

Not valid SML syntax –
only the compiler can
write in tfn and [type]

