
Hype for Types
HW 01

Due 21 January 2020

This homework will require you to translate between English descriptions of typing rules and
formal inference rules. For example, we have the following typing rule for product types:

If x has type σ and y has type τ , then (x,y) has type σ ∗ τ

which is represented by the formal inference rule

Γ ` x : σ Γ ` y : τ

Γ ` (x,y) : σ ∗ τ .

So, we’ll start by giving you either the English description or the formal rule, and asking you to
produce the other. Then, we’ll move on to giving multiple rules governing a more complex type.

If you’re trying to LATEX this, an easy way to typeset this is by using the proof package (i.e.
usepackage{proof}). Then, you can produce the above inference rule with

\infer[]

{\Gamma\vdash\texttt{(x,y)}:\sigma * \tau}

{\Gamma\vdash\texttt{x}:\sigma & \Gamma\vdash\texttt{y}:\tau}

Question 1 (Required)
What does the following rule say in English?

Γ ` f : σ → τ Γ ` t : σ
Γ ` (f t) : τ

Question 2 (Required)
Write the following rule as a formal inference rule.

If, in context Γ, b is of type bool, and both e1 and e2 are of type τ (in Γ), then
the expression if b then e1 else e2 is of type τ

1

98-317 Hype for Types HW01

Question 3 (Required)
For any type τ , we define the type τ option by the following rules:

• In any context, NONE : τ option

• If x is of type τ in context Γ, SOME(x) is of type τ option in context Γ

• If

– e1 : σ in context Γ

– e2 : σ in context Γ, x : τ

– opt : τ option in context Γ

then
(case opt of NONE => e1 | (SOME x) => e2)

has type σ in context Γ

Write these rules as formal inference rules

2

98-317 Hype for Types HW01

Question 4 (Optional)
Write inference rules for the type bool of booleans. You should include the values of type bool,
rule(s) for getting booleans from other types (e.g. if x and y are of the same type, then x=y is a
boolean1), and rules for using booleans (e.g. what’s an appropriate rule for if...then...else
expressions?).

1Don’t worry about equality types

3

98-317 Hype for Types HW01

Question 5 (Optional)
Come up with an inference rule governing how to typecheck let...in...end expressions with
only a single declaration between the let and the in, e.g.

let

val x = e

in

y

end

4

