
Algebra, Calculus, Types and Trees

Consider the type of finite binary trees (with no data at the nodes):

type t = Empty
| Node of t * t

As usual, a binary tree is recursively defined to be either empty, or a node with
a left subtree and a right subtree, which must both be (possibly empty) binary
trees under this definition.

Next, consider the following function:

(* f: (t * t * t * t * t * t * t) -> t *)
let f (t1, t2, t3, t4, t5, t6, t7) =

match (t1, t2, t3, t4) with
| (Empty, Empty, Empty, Empty) ->

begin
match t5,t6 with
| Node (t5a, t5b),_ -> Node(Node(Node(Node(Empty,t7),t6),t5a),t5b)
| Empty, Node _ -> Node(Node(Node(Node(Node(t6,t7),Empty),Empty),Empty),Empty)
| Empty, Empty _ ->

match t7 with
| Node(Node(Node(Node(t7a,t7b),t7c),t7d),t7e) ->

Node(Node(Node(Node(Node(Empty,t7a),t7b),t7c),t7d),t7e)
| _ -> t7

end
| _ -> Node(Node(Node(Node(Node(Node(Node(t7,t6),t5)),t4),t3),t2),t1)

It turns out that this function is actually extremely remarkable. Take a second
and try to determine why.

In fact, this is an injective function from the type of 7-tuples of binary trees to
single binary trees (it’s actually bijective, but I won’t prove that here). This is
not, in and of itself, particularly alarming – there are countably infinite binary
trees, and countably many n-tuples thereof (for finite n), so we could always
obtain such an objection by way of encodings to and from the natural numbers.
What is remarkable about this function, however, is that it only examines its
arguments to a bounded, finite depth (namely, no tree is examined more than
four levels deep).
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Another interesting fact is that 7 is the smallest nontrivial tuple size for which
this is possible (try it!). Nor will you be able to do this for tuples of size 8, 9,
10. . . but you can for 13, by using the above function twice. And similarly for
any number that is 1 mod 6.

So how was this function produced?

Algebraic Datatypes
Products
Recall that we notate “tuple” types in ML as “multiplied”, as in a * b. This is
no accident, as in the lingo we refer to “tuple types” as “product types”, as in
Cartesian product, defined by the following rules:

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2

Γ ` π1 e : τ1

Γ ` e : τ1 ∗ τ2

Γ ` π2 e : τ2

The first is an introduction form, which allows us to create a tuple. The others,
then, are elimination forms, giving us mechanisms to get information out of a
tuple. When programming in ML or Haskell, it is often preferred to use pattern
matching instead of these projection operators, but in the underlying theory we
consider these to be primitive (leaving pattern matching for another construct
to be shown).

If you are good at nitpicking definitions, you may spot a problem with this setup
– how do we construct tuples of size greater than two?

There are three reasonable ways to interpret the type τ1 × τ2 × τ3:

• Left-associative – τ1 × τ2 × τ3 , (τ1 × τ2) × τ3. No new constructs are
needed; we can use π1 and π2 normally. On the other hand, indexing into
the beginning of an n-tuple gets very irritating very quickly.

• Right-associative – τ1×τ2×τ3 , τ1×(τ2×τ3). Similar to the left-associative
version, but indexing into the end of a tuple is instead the irritating part.

• Non-associative – τ1 × τ2 × τ3 is primitive, and is effectively a macro over
some other, n-ary type operator. This is the most pleasant to actually
program with, but has a number of unpleasant consequences for the under-
lying typesystem. The π1 operator can now work on many different types
(really, any tuple type!), making the rules for the elimination form more
complex. Similarly, these operators can no longer be safely used as first-
order functions without introducing some form of ad-hoc polymorphism
(what is the input type of map π1?).
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For the purpose of this class, we will take the third option and gloss over the
details as usual.

You may also have heard of “record types”, tuples with labeled elements. These
are equivalent to standard tuples, but their elimination forms are instead notated
π`, where ` is the label for the desired element (in fact, languages like Haskell
treat records as syntactic sugar over records, in which π` is a macro for the
corresponding πi projection). Including these effectively locks us into the third
interpretation of tuples, for the same reasons.

Closely related to the concept of product types is the so-called unit type, the
type of the empty tuple. This type is often notated 1 (or just 1), as it has exactly
one element, (). Just as the integer 1 is the identity for numerical multiplication,
we often treat unit as the identity for multiplication of types as well, as we can
transform x : a into (x,()) : a * unit and vice versa.

Sums
A difficulty that plagues many popular programming languages today is handling
functions that can return multiple different types dependent on some condition.
For example, a string processing function may want to return some deserialized
data structure or an error message (a string). C handles this with “return codes”,
mapping each possible error message to an integer, but this doesn’t generalize.
In a dynamically typed language, you can avoid this by not writing down a
return type at all, but this brings its own problems – in python, for example,
library authors often have to write redundant type checks into their functions to
handle a dynamic input type1.

One idea might be, when returning something of type τ1 or τ2, to use some kind
of product int× τ1 × τ2. In this encoding, the first element of the 3-tuple should
be 0 or 1, and tells you which of the other projections are the “real” value, and
that the other value is merely a sentinal. For example, to return an int that
could also be a string, we might return the value (0, 3, "") – 0 to mean that
we’re returning an int, 3 is the “actual” return value, and "" is just to fill out the
tuple. This is (an abstract description of) the solution used in Java. However,
this doesn’t scale well. For one, we have to store a value of every possible return
type, most of which are not used. A smarter idea is to use something like a C
union along with a tag, where we only store the variant that we actually have.

This leads us to the variant/enum types found in ML and ML-based languages.
In a type theory, these are sum types, dual to the aforementioned products.
Sums are defined with the following introduction/elimination forms:

1This is alleviated to some extent by duck typing and an implicit contract with the caller,
but this gets very messy very quickly if the shared behavior is not primitive. Python’s pathlib
library, for example, needs to have the path concatenation operator work on its own internal
Path datatype (containing some extra metadata) as well with regular strs, with different
merging behaviors for each.

3



Γ ` e : τ1

Γ ` INL{τ1 + τ2} e : τ1 + τ2

Γ ` e : τ2

Γ ` INR{τ1 + τ2} e : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ1 ` e2 : τ
case{τ1 + τ2}(e, x1.e1, x2.e2) : τ

A few notes. First, in the theory, we generally stick to binary sums, with variants
INL and INR. When extending to a general-purpose programming language,
on the other hand, we can amend the rules to allow for arbitrarily-named
constructors, at the cost of some extra complexity. Similarly, the case construct
in the elimination form is shorthand for the full case (or match, etc) expression,
which can also be extended to account for arbitrary constructors (instead of
left/right).

Just as unit is the identity for products on types, there is also a type notated 0,
the identity on sums. This is void (not to be confused with the void found in
languages like C or Java, which is actually unit!), the type with no members.
To see this, notice that, as there is no way to construct a value of type void,
any member of type 0 + τ must have the form INR e, where e has type τ .

Polynomial Datatypes
With these, we now have enough background to show how to fit seven trees into
one.

Types formed only from sums, products and type variables are known as algebraic
datatypes, or a polynomial type/type operator.

Let’s look at the definition of binary trees again.

type t = Empty
| Node of t * t

With some sleight of hand, we can transmute it into a form that looks like what
we had above:

type t = INL of unit
| INR of t * t

Since Empty is a nullary constructor, we can attach a unit to it “for free”. Then,
we just rename the branches, giving us a polynomial type, which we can write
using the shorter notation introduced earlier:

T = 1 + T 2

Read as a type isomorphism rather than a definitional equation, we say that we
can transform back and forth between the types T and 1 + T 2 “for free” – only
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by wrapping constructors and pattern matching, and of course we can do this.
Viewed as an equation, then, we get our first hint as to what’s special about the
number 7.

Solving this quadratic gives T = 1
2 ± i

√
3

2 . This is a primitive sixth root of unity,
so we find that T 6 = 1, which is obviously false. Carrying forward, however, we
conclude that T 7 = T , which is not obviously false, so it must be true.

Of course, this line of reasoning is completely bogus. For one, we went from
a false statement (T 6 = 1 – “there is only one six-tuple of binary trees”) to
one we claim is true, namely that seven tuples of trees and singleton trees are
isomorphic. Also, the “value” of T is completely nonsense – it contains fractional,
negative and even imaginary types, none of which have any meaning in our type
theory. And yet, the function from the beginning exists.

Type Algebra
Let’s step back a bit. Remember that we defined two types to be “equal”
algebraically when there is a “free” bijection between them. Then we can take
the step

T 7 = T 8 + T 6

in a meaningful way: Consider one of the seven trees (the first, say) and set the
others aside. This tree is either empty (leaving us only with the 6 remaining
trees) or has two children (giving us the 6 remaining trees + 2 subtrees). And
the reverse holds as well, where we can turn a structure that is either 6 trees or
8 trees into 7 trees. This can be iterated, ultimately leading to a step containing
a 1, which cannot be reduced further. The full derivation can be found in the
appendix.

Remember that we defined these equalities to be “free isomorphisms”, namely
those that can be written entirely via pattern matching or constructor application.
The mystery of where the function from the beginning came from, then, is solved
– by chaining free bijections together (and flipped left/right once, to make the
code easier), we can determine what unique cases are necessary, and what they
map to. Furthermore, because datatype constructors are finite, we know that
the resulting function must also be “free”.

Calculus
Arbitrary tree structures are mathematically important, but not particularly
interesting from a programming perspective. We almost never want to be
manipulating a tree or a list with no data in it.

Happily, though, we can easily extend our type system to add polynomial type
operators, functions from types to types. Then, we can define the type of lists as
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follows:

L(α) = 1 + α ∗ L(α)

derived from the constructors of list, Nil and Cons. So L(int) would be the
type int list.

Now that we have things that look like functions on types (but not functions on
values!), we may as well do something interesting with it. What if we take the
derivative (I promise it’s well-defined!)?

In order to do this, we’re going to do something that isn’t strictly allowed and
solve for the closed form of the function L to find

L(α) = 1
1− α

In general, this wouldn’t be well-formed due to the fractional and negative
types. However, if we examine the Taylor series of this function (also found by
repeatedly expanding the function L), we see

L(α) = 1 + α+ α2 + α3 + . . .

corresponding to the fact that a list of αs is 0- or 1- or 2- or so on many αs.
This will generally work for recursive polynomial type operators, so we will work
with the “invalid” representation for ease of manipulation.

Taking the derivative, we find that

L′(α) =
(

1
1− α

)2
= L(α)2

Strangely, it seems that the derivative of a list is actually two lists. A coincidence?

One-hole contexts
One common problem faced by functional languages is that random access into a
list is O(n) in the index requested. In many workloads, however, it is unnecessary
to have random access to many disparate elements of the list at once. It is often
the case that most accesses are spacially local, or “close to each other”. One idea,
then, is to maintain a “cursor” into the list that allows constant time updating
at the cursor, and constant time movement “left” or “right” on the list (think
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about moving the cursor around in a text editor). You may have heard of this
as a “zipper”2.

What does this mythical data structure look like? Spiritually, for a list, a cursor
needs two pieces of information only: The elements before the cursor, and the
elements after. Thankfully, as the list interface gives constant time access to the
first element and tail, this means that we can represent this zipper as two lists!
But wait. . . isn’t that what we said L′(α) is?

In fact, this works for any polynomial datatype you care to try. This will always
give this kind of “cursor” structure, otherwise known as a one hole context,
consisting of the information representing one structure with the type variable
“removed” as the cursor.

Let’s try a different structure. What about trees?

T (α) = 1 + α× T 2(α)

Deriving and solving, we get

T ′(α) = T 2(α) + 2T (α)T ′(α)

T ′(α) = T 2(α)× 1
1− 2T (α) = T 2(α)× L(2T (α))

Note that the type 2 here is 1 + 1. . . otherwise known as bool.

So what would a zipper on binary trees look like? To reconstruct a full tree from
a given “cursor”, you’d need:

• The children of the current node
• A list of ancestors of the current node

We’d actually need a bit more – we’d need to know whether each node is the
left or right child of its parent.

Let’s compare this with our derivative:

• Children of the current node: T 2(α), check.
• List of ancestors: L(2× T (α))

And in fact, the list of ancestors also tracks whether the successor is a left or
right child – that’s where the 2 parameter comes in!

2You may protest that this is a job for regular random access arrays. You’re right in the
case that the workload does not require a lot of splitting or frequent addition/removals, all of
which functional lists are extremely good at. Random access arrays are only good if the size of
the array moves in one direction (generally growing, generally shrinking, or mostly constant).
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Appendix: Seven Trees
Here is the full derivation from T 7 to T , using only the semiring properties
(associativity and commutativity of + and ×) and the identity T = T 2 + 1.

T 7 = T 8 + T 6

= T 8 + T 7 + T 5

= T 8 + T 7 + T 6 + T 4

= T 8 + T 7 + T 6 + T 5 + T 3

= T 8 + T 7 + T 6 + T 5 + T 4 + T 2

= T 8 + T 7 + T 6 + T 5 + T 4 + T 3 + T

= T 8 + T 7 + T 6 + T 4 + T 4 + T

= T 8 + T 7 + T 5 + T 4 + T

= T 8 + T 6 + T 4 + T

= T 7 + T 4 + T

= T 7 + T 4 + T 2 + 1
= T 7 + T 4 + T 3 + T + 1
= T 7 + T 4 + T 4 + T 2 + T + 1
= T 7 + T 5 + T 4 + T 3 + T 2 + T + 1
= T 6 + T 4 + T 3 + T 2 + T + 1
= T 5 + T 3 + T 2 + T + 1
= T 4 + T 2 + T + 1
= T 3 + T + 1
= T 2 + 1
= T

Notice that after reaching T 7 + T 4 + T„ we expand the T to get T 2 + T 0,
preventing us from using the same trick to derive T from T 6.
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